To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we establish the $L^p$ bounds for partial polynomial Carleson operators along polynomial curves for $p \gt 1$, which depend only on $p$ and the number of monomials in the defining polynomial. Additionally, we study two classes of oscillatory integral operators of Radon type and derive uniform $L^2$ bounds.
We characterize the subsets E of a metric space X with doubling measure whose distance function to some negative power $\operatorname{dist}(\cdot,E)^{-\alpha}$ belongs to the Muckenhoupt A1 class of weights in X. To this end, we introduce the weakly porous sets in this setting, and show that, along with certain doubling-type conditions for the sizes of the largest E-free holes, these sets characterize the mentioned A1-property. We exhibit examples showing the optimality of these conditions, and simplify them in the particular case where the underlying measure satisfies a qualitative annular decay property. In addition, we use some of these distance functions as a new and simple method to explicitly construct doubling weights in ${\mathbb R}^n$ that do not belong to $A_\infty.$
for piecewise constant functions $f$ with nonzero and zero values alternating. The above inequality strengthens a recent result of Bilz and Weigt [3] proved for indicator functions of bounded variation vanishing at $\pm\infty$. We conjecture that the inequality holds for all functions of bounded variation, representing a stronger version of the existing conjecture ${\rm Var} (Mf)\le {\rm Var} (f)$. We also obtain the discrete counterpart of our theorem, moreover proving a transference result on equivalency between both settings that is of independent interest.
We prove new weighted decoupling estimates. As an application, we give an improved sufficient condition for almost everywhere convergence of the Bochner-Riesz means of arbitrary $L^p$ functions for $1<p<2$ in dimensions 2 and 3.
Let $M_\mu $ be the uncentered Hardy–Littlewood maximal operator with a Borel measure $\mu $ on $\mathbb {R}$. In this note, we verify that the norm of $M_\mu $ on $L^p(\mathbb {R},\mu )$ with $p\in (1,\infty )$ is just the upper bound $\theta _p$ obtained by Grafakos and Kinnunen and reobtain the norm of $M_\mu $ from $L^1(\mathbb {R},\mu )$ to $L^{1,\infty }(\mathbb {R},\mu )$. Moreover, the norm of the “strong” maximal operator $N_{\vec {\mu }}^{n}$ on $L^p(\mathbb {R}^n, \vec {\mu })$ is also given.
and discuss generalized weighted Hardy-type inequalities associated with the measure $d\mu=e^{v(x)}dx$. As an application, we obtain several Liouville-type results for positive solutions of the non-linear elliptic problem with singular lower order term
where Ω is a bounded or an unbounded exterior domain in ${\mathbb{R}}^N$, $N \gt p \gt 1$, $B+p-1 \gt 0$, as well as of the non-autonomous quasilinear elliptic problem
In this article, motivated by the regularity theory of the solutions of doubly nonlinear parabolic partial differential equations, the authors introduce the off-diagonal two-weight version of the parabolic Muckenhoupt class with time lag. Then the authors introduce the uncentered parabolic fractional maximal operator with time lag and characterize its two-weighted boundedness (including the endpoint case) in terms of these weights under an additional mild assumption (which is not necessary for one-weight case). The most novelty of this article exists in that the authors further introduce a new parabolic shaped domain and its corresponding parabolic fractional integral with time lag and, moreover, applying the aforementioned (two-)weighted boundedness of the parabolic fractional maximal operator with time lag, the authors characterize the (two-)weighted boundedness (including the endpoint case) of these parabolic fractional integrals in terms of the off-diagonal (two-weight) parabolic Muckenhoupt class with time lag; as applications, the authors further establish a parabolic weighted Sobolev embedding and a priori estimate for the solution of the heat equation. The key tools to achieve these include the parabolic Calderón–Zygmund-type decomposition, the chaining argument, and the parabolic Welland inequality, which is obtained by making the utmost of the geometrical relation between the parabolic shaped domain and the parabolic rectangle.
Let $L=-\Delta +V$ be a Schrödinger operator in ${\mathbb R}^n$ with $n\geq 3$, where $\Delta $ is the Laplace operator denoted by $\Delta =\sum ^{n}_{i=1}({\partial ^{2}}/{\partial x_{i}^{2}})$ and the nonnegative potential V belongs to the reverse Hölder class $(RH)_{q}$ with $q>n/2$. For $\alpha \in (0,1)$, we define the operator
where $\{e^{-tL^\alpha } \}_{t>0}$ is the fractional heat semigroup of the operator L, $\{v_j\}_{j\in \mathbb Z}$ is a bounded real sequence and $\{a_j\}_{j\in \mathbb Z}$ is an increasing real sequence.
We investigate the boundedness of the operator $T_N^{L^{\alpha }}$ and the related maximal operator $T^*_{L^{\alpha }}f(x):=\sup _N \vert T_N^{L^{\alpha }} f(x)\vert $ on the spaces $L^{p}(\mathbb {R}^{n})$ and $BMO_{L}(\mathbb {R}^{n})$, respectively. As extensions of $L^{p}(\mathbb {R}^{n})$, the boundedness of the operators $T_N^{L^{\alpha }}$ and $T^*_{L^{\alpha }}$ on the Morrey space $L^{\rho ,\theta }_{p,\kappa }(\mathbb {R}^{n})$ and the weak Morrey space $WL^{\rho ,\theta }_{1,\kappa }(\mathbb {R}^{n})$ has also been proved.
We present a new proof of the compactness of bilinear paraproducts with CMO symbols. By drawing an analogy to compact linear operators, we first explore further properties of compact bilinear operators on Banach spaces and present examples. We then prove compactness of bilinear paraproducts with CMO symbols by combining one of the properties of compact bilinear operators thus obtained with vanishing Carleson measure estimates and interpolation of bilinear compactness.
Given a non-negative integer n and a ring R with identity, we construct a hereditary abelian model structure on the category of left R-modules where the class of cofibrant objects coincides with $\mathcal{GF}_n(R)$ the class of left R-modules with Gorenstein flat dimension at most n, the class of fibrant objects coincides with $\mathcal{F}_n(R)^\perp$ the right ${\rm Ext}$-orthogonal class of left R-modules with flat dimension at most n, and the class of trivial objects coincides with $\mathcal{PGF}(R)^\perp$ the right ${\rm Ext}$-orthogonal class of PGF left R-modules recently introduced by Šaroch and . The homotopy category of this model structure is triangulated equivalent to the stable category $\underline{\mathcal{GF}(R)\cap\mathcal{C}(R)}$ modulo flat-cotorsion modules and it is compactly generated when R has finite global Gorenstein projective dimension.
The second part of this paper deals with the PGF dimension of modules and rings. Our results suggest that this dimension could serve as an alternative definition of the Gorenstein projective dimension. We show, among other things, that (n-)perfect rings can be characterized in terms of Gorenstein homological dimensions, similar to the classical ones, and the global Gorenstein projective dimension coincides with the global PGF dimension.
In dimension n = 1, we obtain $L^{p_1}(\mathbb R) \times\dots\times L^{p_m}(\mathbb R)$ to $L^p(\mathbb R)$ boundedness for the multilinear spherical maximal function in the largest possible open set of indices and we provide counterexamples that indicate the optimality of our results.
We resolve some questions posed by Handelman in 1996 concerning log convex $L^1$ functions. In particular, we give a negative answer to a question he posed concerning the integrability of $h^2(x)/h(2x)$ when h is $L^1$ and log convex and $h(n)^{1/n}\rightarrow 1$.
We show that the fractional integral operator $I_{\alpha }$, $0<\alpha <n$, and the fractional maximal operator $M_{\alpha }$, $0\le \alpha <n$, are bounded on weak Choquet spaces with respect to Hausdorff content. We also investigate these operators on Choquet–Morrey spaces. The results for the fractional maximal operator $M_\alpha $ are extensions of the work of Tang [‘Choquet integrals, weighted Hausdorff content and maximal operators’, Georgian Math. J.18(3) (2011), 587–596] and earlier work of Adams and Orobitg and Verdera. The results for the fractional integral operator $I_{\alpha }$ are essentially new.
In this paper, we obtain the $H^{p_1}\times H^{p_2}\times H^{p_3}\to H^p$ boundedness for trilinear Fourier multiplier operators, which is a trilinear analogue of the multiplier theorem of Calderón and Torchinsky [4]. Our result improves the trilinear estimate in [22] by additionally assuming an appropriate vanishing moment condition, which is natural in the boundedness into the Hardy space $H^p$ for $0<p\le 1$.
We study the degree of an L-Lipschitz map between Riemannian manifolds, proving new upper bounds and constructing new examples. For instance, if $X_k$ is the connected sum of k copies of $\mathbb CP^2$ for $k \ge 4$, then we prove that the maximum degree of an L-Lipschitz self-map of $X_k$ is between $C_1 L^4 (\log L)^{-4}$ and $C_2 L^4 (\log L)^{-1/2}$. More generally, we divide simply connected manifolds into three topological types with three different behaviors. Each type is defined by purely topological criteria. For scalable simply connected n-manifolds, the maximal degree is $\sim L^n$. For formal but nonscalable simply connected n-manifolds, the maximal degree grows roughly like $L^n (\log L)^{-\theta (1)}$. And for nonformal simply connected n-manifolds, the maximal degree is bounded by $L^\alpha $ for some $\alpha < n$.
Let H be the Hermite operator $-\Delta +|x|^2$ on $\mathbb {R}^n$. We prove a weighted $L^2$ estimate of the maximal commutator operator $\sup _{R>0}|[b, S_R^\lambda (H)](f)|$, where $ [b, S_R^\lambda (H)](f) = bS_R^\lambda (H) f - S_R^\lambda (H)(bf) $ is the commutator of a BMO function b and the Bochner–Riesz means $S_R^\lambda (H)$ for the Hermite operator H. As an application, we obtain the almost everywhere convergence of $[b, S_R^\lambda (H)](f)$ for large $\lambda $ and $f\in L^p(\mathbb {R}^n)$.
For decreasing sequences $\{t_{n}\}_{n=1}^{\infty }$ converging to zero and initial data $f\in H^s(\mathbb {R}^N)$, $N\geq 2$, we consider the almost everywhere convergence problem for sequences of Schrödinger means ${\rm e}^{it_{n}\Delta }f$, which was proposed by Sjölin, and was open until recently. In this paper, we prove that if $\{t_n\}_{n=1}^{\infty }$ belongs to Lorentz space ${\ell }^{r,\infty }(\mathbb {N})$, then the a.e. convergence results hold for $s>\min \{\frac {r}{\frac {N+1}{N}r+1},\,\frac {N}{2(N+1)}\}$. Inspired by the work of Lucà-Rogers, we construct a counterexample to show that our a.e. convergence results are sharp (up to endpoints). Our results imply that when $0< r<\frac {N}{N+1}$, there is a gain over the a.e. convergence result from Du-Guth-Li and Du-Zhang, but not when $r\geq \frac {N}{N+1}$, even though we are in the discrete case. Our approach can also be applied to get the a.e. convergence results for the fractional Schrödinger means and nonelliptic Schrödinger means.
We prove convergence in norm and pointwise almost everywhere on $L^p$, $p\in (1,\infty )$, for certain multi-parameter polynomial ergodic averages by establishing the corresponding multi-parameter maximal and oscillation inequalities. Our result, in particular, gives an affirmative answer to a multi-parameter variant of the Bellow–Furstenberg problem. This paper is also the first systematic treatment of multi-parameter oscillation semi-norms which allows an efficient handling of multi-parameter pointwise convergence problems with arithmetic features. The methods of proof of our main result develop estimates for multi-parameter exponential sums, as well as introduce new ideas from the so-called multi-parameter circle method in the context of the geometry of backwards Newton diagrams that are dictated by the shape of the polynomials defining our ergodic averages.
We prove discrete restriction estimates for a broad class of hypersurfaces arising in seminal work of Birch. To do so, we use a variant of Bourgain’s arithmetic version of the Tomas–Stein method and Magyar’s decomposition of the Fourier transform of the indicator function of the integer points on a hypersurface.