No CrossRef data available.
Published online by Cambridge University Press: 01 September 2023
We answer in a probabilistic setting two questions raised by Stokolos in a private communication. Precisely, given a sequence of random variables $\left\{X_k : k \geq 1\right\}$ uniformly distributed in $(0,1)$ and independent, we consider the following random sets of directions
We prove that almost surely the directional maximal operators associated to those sets of directions are not bounded on $L^p({\mathbb{R}}^2)$ for any $1 \lt p \lt \infty$.