We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, together with the preceding Part I [10], we develop a framework for tame geometry on Henselian valued fields of characteristic zero, called Hensel minimality. It adds to [10] the treatment of the mixed characteristic case. Hensel minimality is inspired by o-minimality and its role in real geometry and diophantine applications. We develop geometric results and applications for Hensel minimal structures that were previously known only under stronger or less axiomatic assumptions, and which often have counterparts in o-minimal structures. We prove a Jacobian property, a strong form of Taylor approximations of definable functions, resplendency results and cell decomposition, all under Hensel minimality – more precisely, $1$-h-minimality. We obtain a diophantine application of counting rational points of bounded height on Hensel minimal curves.
We investigate the convexity of the radial sum of two convex bodies containing the origin. Generally, the radial sum of two convex bodies containing the origin is not convex. We show that the radial sum of a star body (with respect to the origin) and any large centered ball is convex, which produces a pair of convex bodies containing the origin whose radial sum is convex.
We also investigate the convexity of the intersection body of a convex body containing the origin. Generally, the intersection body of a convex body containing the origin is not convex. Busemann’s theorem states that the intersection body of any centered convex body is convex. We are interested in how to construct convex intersection bodies from convex bodies without any symmetry (especially, central symmetry). We show that the intersection body of the radial sum of a star body (with respect to the origin) and any large centered ball is convex, which produces a convex body with no symmetries whose intersection body is convex.
Aromatic B-series were introduced as an extension of standard Butcher-series for the study of volume-preserving integrators. It was proven with their help that the only volume-preserving B-series method is the exact flow of the differential equation. The question was raised whether there exists a volume-preserving integrator that can be expanded as an aromatic B-series. In this work, we introduce a new algebraic tool, called the aromatic bicomplex, similar to the variational bicomplex in variational calculus. We prove the exactness of this bicomplex and use it to describe explicitly the key object in the study of volume-preserving integrators: the aromatic forms of vanishing divergence. The analysis provides us with a handful of new tools to study aromatic B-series, gives insights on the process of integration by parts of trees, and allows to describe explicitly the aromatic B-series of a volume-preserving integrator. In particular, we conclude that an aromatic Runge–Kutta method cannot preserve volume.
Let $\mathcal {N}$ be a non-Archimedean-ordered field extension of the real numbers that is real closed and Cauchy complete in the topology induced by the order, and whose Hahn group is Archimedean. In this paper, we first review the properties of weakly locally uniformly differentiable (WLUD) functions, $k$ times weakly locally uniformly differentiable (WLUD$^{k}$) functions and WLUD$^{\infty }$ functions at a point or on an open subset of $\mathcal {N}$. Then, we show under what conditions a WLUD$^{\infty }$ function at a point $x_0\in \mathcal {N}$ is analytic in an interval around $x_0$, that is, it has a convergent Taylor series at any point in that interval. We generalize the concepts of WLUD$^{k}$ and WLUD$^{\infty }$ to functions from $\mathcal {N}^{n}$ to $\mathcal {N}$, for any $n\in \mathbb {N}$. Then, we formulate conditions under which a WLUD$^{\infty }$ function at a point $\boldsymbol {x_0} \in \mathcal {N}^{n}$ is analytic at that point.
We present a framework for tame geometry on Henselian valued fields, which we call Hensel minimality. In the spirit of o-minimality, which is key to real geometry and several diophantine applications, we develop geometric results and applications for Hensel minimal structures that were previously known only under stronger, less axiomatic assumptions. We show the existence of t-stratifications in Hensel minimal structures and Taylor approximation results that are key to non-Archimedean versions of Pila–Wilkie point counting, Yomdin’s parameterization results and motivic integration. In this first paper, we work in equi-characteristic zero; in the sequel paper, we develop the mixed characteristic case and a diophantine application.
Skolem (1956) studied the germs at infinity of the smallest class of real valued functions on the positive real line containing the constant
$1$
, the identity function
${\mathbf {x}}$
, and such that whenever f and g are in the set,
$f+g,fg$
and
$f^g$
are in the set. This set of germs is well ordered and Skolem conjectured that its order type is epsilon-zero. Van den Dries and Levitz (1984) computed the order type of the fragment below
$2^{2^{\mathbf {x}}}$
. Here we prove that the set of asymptotic classes within any Archimedean class of Skolem functions has order type
$\omega $
. As a consequence we obtain, for each positive integer n, an upper bound for the fragment below
$2^{n^{\mathbf {x}}}$
. We deduce an epsilon-zero upper bound for the fragment below
$2^{{\mathbf {x}}^{\mathbf {x}}}$
, improving the previous epsilon-omega bound by Levitz (1978). A novel feature of our approach is the use of Conway’s surreal number for asymptotic calculations.
A spectral-element method is developed to solve the scattering problem for time-harmonic sound waves due to an obstacle in an homogeneous compressible fluid. The method is based on a boundary perturbation technique coupled with an efficient spectral-element solver. Extensive numerical results are presented, in order to show the accuracy and stability of the method.
Many applications in genetic analyses utilize sampling distributions, which describe the probability of observing a sample of DNA sequences randomly drawn from a population. In the one-locus case with special models of mutation, such as the infinite-alleles model or the finite-alleles parent-independent mutation model, closed-form sampling distributions under the coalescent have been known for many decades. However, no exact formula is currently known for more general models of mutation that are of biological interest. In this paper, models with finitely-many alleles are considered, and an urn construction related to the coalescent is used to derive approximate closed-form sampling formulae for an arbitrary irreducible recurrent mutation model or for a reversible recurrent mutation model, depending on whether the number of distinct observed allele types is at most three or four, respectively. It is demonstrated empirically that the formulae derived here are highly accurate when the per-base mutation rate is low, which holds for many biological organisms.
Eventual positivity problems for real convergent Maclaurin series lead to density questions for sets of harmonic functions. These are solved for large classes of series, and in so doing, asymptotic estimates are obtained for the values of the series near the radius of convergence and for the coefficients of convolution powers.
In this paper, we derive the MacLaurin series of the mean waiting time in light traffic for a GI/G/1 queue. The light traffic is defined by random thinning of the arrival process. The MacLaurin series is derived with respect to the admission probability, and we prove that it has a positive radius of convergence. In the numerical examples, we use the MacLaurin series to approximate the mean waiting time beyond light traffic by means of Padé approximation.
Past work relating to the computation of time-dependent state probabilities in M/M/1 queueing systems is reviewed, with emphasis on methods that avoid Bessel functions. A new series formula of Sharma [13] is discussed and its connection with traditional Bessel function series is established. An alternative new series is developed which isolates the steady-state component for all values of traffic intensity and which turns out to be computationally superior. A brief comparison of our formula, Sharma's formula, and a classical Bessel function formula is given for the computation time of the probability that an initially empty system is empty at time t later.
We derive the MacLaurin series for the moments of the system time and the delay with respect to the parameters in the service time or interarrival time distributions in the GI/G/1 queue. The coefficients in these series are expressed in terms of the derivatives of the interarrival time density function evaluated at zero and the moments of the service time distribution, which can be easily calculated through a simple recursive procedure. The light traffic derivatives can be obtained from these series. For the M/G/1 queue, we are able to recover the formulas for the moments of the system time and the delay, including the Pollaczek–Khinchin mean-value formula.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.