We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the class $\operatorname {Erg}^\perp $ of automorphisms which are disjoint with all ergodic systems. We prove that the identities are the only multipliers of $\operatorname {Erg}^\perp ,$ that is, each automorphism whose every joining with an element of $\operatorname {Erg}^{\perp }$ yields a system which is again an element of $\operatorname {Erg}^{\perp }$, must be an identity. Despite this fact, we show that $\operatorname {Erg}^\perp $ is closed by taking Cartesian products. Finally, we prove that there are non-identity elements in $\operatorname {Erg}^\perp $ whose self-joinings always yield elements in $\operatorname {Erg}^\perp $. This shows that there are non-trivial characteristic classes included in $\operatorname {Erg}^\perp $.
In this paper, we study ergodic $\mathbb {Z}^r$-actions and investigate expansion properties along cyclic subgroups. We show that under some spectral conditions, there are always directions which expand significantly a given measurable set with positive measure. Among other things, we use this result to prove that the set of volumes of all r-simplices with vertices in a set with positive upper density must contain an infinite arithmetic progression, thus showing a discrete density analogue of a classical result by Graham.
We study the quasi-ergodicity of compact strong Feller semigroups $U_t$, $t> 0$, on $L^2(M,\mu )$; we assume that M is a locally compact Polish space equipped with a locally finite Borel measue $\mu $. The operators $U_t$ are ultracontractive and positivity preserving, but not necessarily self-adjoint or normal. We are mainly interested in those cases where the measure $\mu $ is infinite and the semigroup is not intrinsically ultracontractive. We relate quasi-ergodicity on $L^p(M,\mu )$ and uniqueness of the quasi-stationary measure with the finiteness of the heat content of the semigroup (for large values of t) and with the progressive uniform ground state domination property. The latter property is equivalent to a variant of quasi-ergodicity which progressively propagates in space as $t \uparrow \infty $; the propagation rate is determined by the decay of . We discuss several applications and illustrate our results with examples. This includes a complete description of quasi-ergodicity for a large class of semigroups corresponding to non-local Schrödinger operators with confining potentials.
Given a probability space $(X,\mu )$, a square integrable function f on such space and a (unilateral or bilateral) shift operator T, we prove under suitable assumptions that the ergodic means $N^{-1}\sum _{n=0}^{N-1} T^nf$ converge pointwise almost everywhere to zero with a speed of convergence which, up to a small logarithmic transgression, is essentially of the order of $N^{-1/2}$. We also provide a few applications of our results, especially in the case of shifts associated with toral endomorphisms.
The main theorem of this paper establishes a uniform syndeticity result concerning the multiple recurrence of measure-preserving actions on probability spaces. More precisely, for any integers $d,l\geq 1$ and any $\varepsilon> 0$, we prove the existence of $\delta>0$ and $K\geq 1$ (dependent only on d, l, and $\varepsilon $) such that the following holds: Consider a solvable group $\Gamma $ of derived length l, a probability space $(X, \mu )$, and d pairwise commuting measure-preserving $\Gamma $-actions $T_1, \ldots , T_d$ on $(X, \mu )$. Let E be a measurable set in X with $\mu (E) \geq \varepsilon $. Then, K many (left) translates of
cover $\Gamma $. This result extends and refines uniformity results by Furstenberg and Katznelson. As a combinatorial application, we obtain the following uniformity result. For any integers $d,l\geq 1$ and any $\varepsilon> 0$, there are $\delta>0$ and $K\geq 1$ (dependent only on d, l, and $\varepsilon $) such that for all finite solvable groups G of derived length l and any subset $E\subset G^d$ with $m^{\otimes d}(E)\geq \varepsilon $ (where m is the uniform measure on G), we have that K-many (left) translates of
We define the co-spectral radius of inclusions ${\mathcal S}\leq {\mathcal R}$ of discrete, probability- measure-preserving equivalence relations as the sampling exponent of a generating random walk on the ambient relation. The co-spectral radius is analogous to the spectral radius for random walks on $G/H$ for inclusion $H\leq G$ of groups. For the proof, we develop a more general version of the 2–3 method we used in another work on the growth of unimodular random rooted trees. We use this method to show that the walk growth exists for an arbitrary unimodular random rooted graph of bounded degree. We also investigate how the co-spectral radius behaves for hyperfinite relations, and discuss new critical exponents for percolation that can be defined using the co-spectral radius.
We prove a Khintchine-type recurrence theorem for pairs of endomorphisms of a countable discrete abelian group. As a special case of the main result, if $\Gamma $ is a countable discrete abelian group, $\varphi , \psi \in \mathrm {End}(\Gamma )$, and $\psi - \varphi $ is an injective endomorphism with finite index image, then for any ergodic measure-preserving $\Gamma $-system $( X, {\mathcal {X}}, \mu , (T_g)_{g \in \Gamma } )$, any measurable set $A \in {\mathcal {X}}$, and any ${\varepsilon }> 0$, there is a syndetic set of $g \in \Gamma$ such that $\mu ( A \cap T_{\varphi(g)}^{-1} A \cap T_{\psi(g)}^{-1} A ) > \mu(A)^3 - \varepsilon$. This generalizes the main results of Ackelsberg et al [Khintchine-type recurrence for 3-point configurations. Forum Math. Sigma10 (2022), Paper no. e107] and essentially answers a question left open in that paper [Question 1.12; Khintchine-type recurrence for 3-point configurations. Forum Math. Sigma10 (2022), Paper no. e107]. For the group $\Gamma = {\mathbb {Z}}^d$, the result applies to pairs of endomorphisms given by matrices whose difference is non-singular. The key ingredients in the proof are: (1) a recent result obtained jointly with Bergelson and Shalom [Khintchine-type recurrence for 3-point configurations. Forum Math. Sigma10 (2022), Paper no. e107] that says that the relevant ergodic averages are controlled by a characteristic factor closely related to the quasi-affine (or Conze–Lesigne) factor; (2) an extension trick to reduce to systems with well-behaved (with respect to $\varphi $ and $\psi $) discrete spectrum; and (3) a description of Mackey groups associated to quasi-affine cocycles over rotational systems with well-behaved discrete spectrum.
For a continuous $\mathbb {N}^d$ or $\mathbb {Z}^d$ action on a compact space, we introduce the notion of Bohr chaoticity, which is an invariant of topological conjugacy and which is proved stronger than having positive entropy. We prove that all principal algebraic $\mathbb {Z}$ actions of positive entropy are Bohr chaotic. The same is proved for principal algebraic actions of $\mathbb {Z}^d$ with positive entropy under the condition of existence of summable homoclinic points.
We demonstrate that the phenomenon of popular differences (aka the phenomenon of large intersections) holds for natural families of polynomial patterns in rings of integers of number fields. If K is a number field with ring of integers $\mathcal{O}_K$ and $E \subseteq \mathcal{O}_K$ has positive upper Banach density $d^*(E) = \delta > 0$, we show, inter alia:
(1) if $p(x) \in K[x]$ is an intersective polynomial (i.e., p has a root modulo m for every $m \in \mathcal{O}_K$) with $p(\mathcal{O}_K) \subseteq \mathcal{O}_K$ and $r, s \in \mathcal{O}_K$ are distinct and nonzero, then for any $\varepsilon > 0$, there is a syndetic set $S \subseteq \mathcal{O}_K$ such that for any $n \in S$,
\begin{align*}d^* \left( \left\{ x \in \mathcal{O}_K \;:\; \{x, x + rp(n), x + sp(n)\} \subseteq E \right\} \right) > \delta^3 - \varepsilon. \end{align*}
Moreover, if ${s}/{r} \in \mathbb{Q}$, then there are syndetically many $n \in \mathcal{O}_K$ such that
\begin{align*}d^* \left( \left\{ x \in \mathcal{O}_K \;:\; \{x, x + rp(n), x + sp(n), x + (r+s)p(n)\} \subseteq E \right\} \right)> \delta^4 - \varepsilon; \end{align*}
(2) if $\{p_1, \dots, p_k\} \subseteq K[x]$ is a jointly intersective family (i.e., $p_1, \dots, p_k$ have a common root modulo m for every $m \in \mathcal{O}_K$) of linearly independent polynomials with $p_i(\mathcal{O}_K) \subseteq \mathcal{O}_K$, then there are syndetically many $n \in \mathcal{O}_K$ such that
\begin{align*}d^* \left( \left\{ x \in \mathcal{O}_K \;:\; \{x, x + p_1(n), \dots, x + p_k(n)\} \subseteq E \right\} \right)> \delta^{k+1} - \varepsilon. \end{align*}
These two results generalise and extend previous work of Frantzikinakis and Kra [21] and Franztikinakis [19] on polynomial configurations in $\mathbb{Z}$ and build upon recent work of the authors and Best [2] on linear patterns in general abelian groups. The above combinatorial results follow from multiple recurrence results in ergodic theory via a version of Furstenberg’s correspondence principle. The ergodic-theoretic recurrence theorems require a sharpening of existing tools for handling polynomial multiple ergodic averages. A key advancement made in this paper is a new result on the equidistribution of polynomial orbits in nilmanifolds, which can be seen as a far-reaching generalisation of Weyl’s equidistribution theorem for polynomials of several variables:
(3) let $d, k, l \in \mathbb{N}$. Let $(X, \mathcal{B}, \mu, T_1, \dots, T_l)$ be an ergodic, connected $\mathbb{Z}^l$-nilsystem. Let $\{p_{i,j} \;:\; 1 \le i \le k, 1 \le j \le l\} \subseteq \mathbb{Q}[x_1, \dots, x_d]$ be a family of polynomials such that $p_{i,j}\left( \mathbb{Z}^d \right) \subseteq \mathbb{Z}$ and $\{1\} \cup \{p_{i,j}\}$ is linearly independent over $\mathbb{Q}$. Then the $\mathbb{Z}^d$-sequence $\left( \prod_{j=1}^l{T_j^{p_{1,j}(n)}}x, \dots, \prod_{j=1}^l{T_j^{p_{k,j}(n)}}x \right)_{n \in \mathbb{Z}^d}$ is well-distributed in $X^k$ for every x in a co-meager set of full measure.
We prove convergence in norm and pointwise almost everywhere on $L^p$, $p\in (1,\infty )$, for certain multi-parameter polynomial ergodic averages by establishing the corresponding multi-parameter maximal and oscillation inequalities. Our result, in particular, gives an affirmative answer to a multi-parameter variant of the Bellow–Furstenberg problem. This paper is also the first systematic treatment of multi-parameter oscillation semi-norms which allows an efficient handling of multi-parameter pointwise convergence problems with arithmetic features. The methods of proof of our main result develop estimates for multi-parameter exponential sums, as well as introduce new ideas from the so-called multi-parameter circle method in the context of the geometry of backwards Newton diagrams that are dictated by the shape of the polynomials defining our ergodic averages.
The construction of a spectral cocycle from the case of one-dimensional substitution flows [A. I. Bufetov and B. Solomyak. A spectral cocycle for substitution systems and translation flows. J. Anal. Math.141(1) (2020), 165–205] is extended to the setting of pseudo-self-similar tilings in ${\mathbb R}^d$, allowing expanding similarities with rotations. The pointwise upper Lyapunov exponent of this cocycle is used to bound the local dimension of spectral measures of deformed tilings. The deformations are considered, following the work of Treviño [Quantitative weak mixing for random substitution tilings. Israel J. Math., to appear], in the simpler, non-random setting. We review some of the results of Treviño in this special case and illustrate them on concrete examples.
We analyze the long-term stability of a stochastic model designed to illustrate the adaptation of a population to variation in its environment. A piecewise deterministic process modeling adaptation is coupled to a Feller logistic diffusion modeling population size. As the individual features in the population become further away from the optimal ones, the growth rate declines, making population extinction more likely. Assuming that the environment changes deterministically and steadily in a constant direction, we obtain the existence and uniqueness of the quasi-stationary distribution, the associated survival capacity, and the Q-process. Our approach also provides several exponential convergence results (in total variation for the measures). From this synthetic information, we can characterize the efficiency of internal adaptation (i.e. population turnover from mutant invasions). When the latter is lacking, there is still stability, but because of the high level of population extinction. Therefore, any characterization of internal adaptation should be based on specific features of this quasi-ergodic regime rather than the mere existence of the regime itself.
The aim of this note is twofold. First, we prove an abstract version of the Calderón transference principle for inequalities of admissible type in the general commutative multilinear and multiparameter setting. Such an operation does not increase the constants in the transferred inequalities. Second, we use the last information to study a certain dichotomy arising in problems of finding the best constants in the weak type $(1,1)$ and strong type $(p,p)$ inequalities for one-parameter ergodic maximal operators.
We show that, under finitely many ergodicity assumptions, any multicorrelation sequence defined by invertible measure-preserving $\mathbb {Z}^d$-actions with multivariable integer polynomial iterates is the sum of a nilsequence and a nullsequence, extending a recent result of the second author. To this end, we develop a new seminorm bound estimate for multiple averages by improving the results in a previous work of the first, third, and fourth authors. We also use this approach to obtain new criteria for joint ergodicity of multiple averages with multivariable polynomial iterates on ${\mathbb Z}^{d}$-systems.
We study the behavior of the co-spectral radius of a subgroup H of a discrete group $\Gamma $ under taking intersections. Our main result is that the co-spectral radius of an invariant random subgroup does not drop upon intersecting with a deterministic co-amenable subgroup. As an application, we find that the intersection of independent co-amenable invariant random subgroups is co-amenable.
In this paper, we will introduce the ‘grid method’ to prove that the extreme case of oscillation occurs for the averages obtained by sampling a flow along the sequence of times of the form $\{n^\alpha : n\in {\mathbb {N}}\}$, where $\alpha $ is a positive non-integer rational number. Such behavior of a sequence is known as the strong sweeping-out property. By using the same method, we will give an example of a general class of sequences which satisfy the strong sweeping-out property. This class of sequences may be useful to solve a long-standing open problem: for a given irrational$\alpha $, whether the sequence $(n^\alpha )$ is bad for pointwise ergodic theorem in $L^2$ or not. In the process of proving this result, we will also prove a continuous version of the Conze principle.
Let $({\mathbb X}, T)$ be a subshift of finite type equipped with the Gibbs measure $\nu $ and let f be a real-valued Hölder continuous function on ${\mathbb X}$ such that $\nu (f) = 0$. Consider the Birkhoff sums $S_n f = \sum _{k=0}^{n-1} f \circ T^{k}$, $n\geqslant 1$. For any $t \in {\mathbb R}$, denote by $\tau _t^f$ the first time when the sum $t+ S_n f$ leaves the positive half-line for some $n\geqslant 1$. By analogy with the case of random walks with independent and identically distributed increments, we study the asymptotic as $ n\to \infty $ of the probabilities $ \nu (x\in {\mathbb X}: \tau _t^f(x)>n) $ and $ {\nu (x\in {\mathbb X}: \tau _t^f(x)=n) }$. We also establish integral and local-type limit theorems for the sum $t+ S_n f(x)$ conditioned on the set $\{ x \in {\mathbb X}: \tau _t^f(x)>n \}.$
We introduce a notion of sensitivity with respect to a continuous real-valued bounded map which provides a sufficient condition for a continuous transformation, acting on a Baire metric space, to exhibit a Baire generic subset of points with historic behavior (also known as irregular points). The applications of this criterion recover, and extend, several known theorems on the genericity of the irregular set, in addition to yielding a number of new results, including information on the irregular set of geodesic flows, in both negative and non-positive curvature, and semigroup actions.
We examine multiple ergodic averages of commuting transformations with polynomial iterates in which the polynomials may be pairwise dependent. In particular, we show that such averages are controlled by the Gowers–Host–Kra seminorms whenever the system satisfies some mild ergodicity assumptions. Combining this result with the general criteria for joint ergodicity established in our earlier work, we determine a necessary and sufficient condition under which such averages are jointly ergodic, in the sense that they converge in the mean to the product of integrals, or weakly jointly ergodic, in that they converge to the product of conditional expectations. As a corollary, we deduce a special case of a conjecture by Donoso, Koutsogiannis, and Sun in a stronger form.
Let $\mu $ be a probability measure on $\mathrm {GL}_d(\mathbb {R})$, and denote by $S_n:= g_n \cdots g_1$ the associated random matrix product, where $g_j$ are i.i.d. with law $\mu $. Under the assumptions that $\mu $ has a finite exponential moment and generates a proximal and strongly irreducible semigroup, we prove a Berry–Esseen bound with the optimal rate $O(1/\sqrt n)$ for the coefficients of $S_n$, settling a long-standing question considered since the fundamental work of Guivarc’h and Raugi. The local limit theorem for the coefficients is also obtained, complementing a recent partial result of Grama, Quint and Xiao.