We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that the measure of maximal entropy of every complex Hénon map is exponentially mixing of all orders for Hölder observables. As a consequence, the Central Limit Theorem holds for all Hölder observables.
We study local biholomorphisms with finite orbits in some neighborhood of the origin since they are intimately related to holomorphic foliations with closed leaves. We describe the structure of the set of periodic points in dimension 2. As a consequence we show that given a finite-orbits local biholomorphism F, in dimension 2, there exists an analytic curve passing through the origin and contained in the fixed-point set of some non-trivial iterate of $F.$ As an application we obtain that at least one eigenvalue of the linear part of F at the origin is a root of unity. Moreover, we show that such a result is sharp by exhibiting examples of finite-orbits local biholomorphisms such that exactly one of the eigenvalues is a root of unity. These examples are subtle since we show they cannot be embedded in one-parameter groups.
We construct automorphisms of
${\mathbb C}^2$
, and more precisely transcendental Hénon maps, with an invariant escaping Fatou component which has exactly two distinct limit functions, both of (generic) rank one. We also prove a general growth lemma for the norm of points in orbits belonging to invariant escaping Fatou components for automorphisms of the form
$F(z,w)=(g(z,w),z)$
with
$g(z,w):{\mathbb C}^2\rightarrow {\mathbb C}$
holomorphic.
We investigate the local dynamics of antiholomorphic diffeomorphisms around a parabolic fixed point. We first give a normal form. Then we give a complete classification including a modulus space for antiholomorphic germs with a parabolic fixed point under analytic conjugacy. We then study some geometric applications: existence of real analytic invariant curves, existence of holomorphic and antiholomorphic roots of holomorphic and antiholomorphic parabolic germs, and commuting holomorphic and antiholomorphic parabolic germs.
A holomorphic endomorphism of
${{\mathbb {CP}}}^n$
is post-critically algebraic if its critical hypersurfaces are periodic or preperiodic. This notion generalizes the notion of post-critically finite rational maps in dimension one. We will study the eigenvalues of the differential of such a map along a periodic cycle. When
$n=1$
, a well-known fact is that the eigenvalue along a periodic cycle of a post-critically finite rational map is either superattracting or repelling. We prove that, when
$n=2$
, the eigenvalues are still either superattracting or repelling. This is an improvement of a result by Mattias Jonsson [Some properties of 2-critically finite holomorphic maps of P2. Ergod. Th. & Dynam. Sys.18(1) (1998), 171–187]. When
$n\geq 2$
and the cycle is outside the post-critical set, we prove that the eigenvalues are repelling. This result improves one obtained by Fornæss and Sibony [Complex dynamics in higher dimension. II. Modern Methods in
Complex Analysis (Princeton, NJ, 1992) (Annals of Mathematics Studies, 137). Ed. T. Bloom, D. W. Catlin, J. P. D’Angelo and Y.-T. Siu, Princeton University Press, 1995, pp. 135–182] under a hyperbolicity assumption on the complement of the post-critical set.
We say that a group G of local (maybe formal) biholomorphisms satisfies the uniform intersection property if the intersection multiplicity
$(\phi (V), W)$
takes only finitely many values as a function of G for any choice of analytic sets V and W of complementary dimension. In dimension
$2$
we show that G satisfies the uniform intersection property if and only if it is finitely determined – that is, if there exists a natural number k such that different elements of G have different Taylor expansions of degree k at the origin. We also prove that G is finitely determined if and only if the action of G on the space of germs of analytic curves has discrete orbits.
For every
$m\in \mathbb {N}$
, we establish the equidistribution of the sequence of the averaged pullbacks of a Dirac measure at any given value in
$\mathbb {C}\setminus \{0\}$
under the
$m$
th order derivatives of the iterates of a polynomials
$f\in \mathbb {C}[z]$
of degree
$d>1$
towards the harmonic measure of the filled-in Julia set of f with pole at
$\infty $
. We also establish non-archimedean and arithmetic counterparts using the potential theory on the Berkovich projective line and the adelic equidistribution theory over a number field k for a sequence of effective divisors on
$\mathbb {P}^1(\overline {k})$
having small diagonals and small heights. We show a similar result on the equidistribution of the analytic sets where the derivative of each iterate of a Hénon-type polynomial automorphism of
$\mathbb {C}^2$
has a given eigenvalue.
Let f be a holomorphic self-map of the unit ball in dimension 2, which does not have an interior fixed point. Suppose that f has a Wolff point p with the boundary dilatation coefficient equal to 1 and the non-tangential differential dfp = id. The local behaviours of f near p are quite diverse, and we give a detailed study in many typical cases. As a byproduct, we give a dynamical interpretation of the Burns–Krantz rigidity theorem. Note also that similar results hold on two-dimensional contractible smoothly bounded strongly pseudoconvex domains.
Let X be a normal projective variety of dimension n and G an abelian group of automorphisms such that all elements of
$G\setminus \{\operatorname {id}\}$
are of positive entropy. Dinh and Sibony showed that G is actually free abelian of rank
$\le n - 1$
. The maximal rank case has been well understood by De-Qi Zhang. We aim to characterize the pair
$(X, G)$
such that
$\operatorname {rank} G = n - 2$
.
We study the dynamics induced by homogeneous polynomials on Banach spaces. It is known that no homogeneous polynomial defined on a Banach space can have a dense orbit. We show a simple and natural example of a homogeneous polynomial with an orbit that is at the same time $\unicode[STIX]{x1D6FF}$-dense (the orbit meets every ball of radius $\unicode[STIX]{x1D6FF}$), weakly dense and such that $\unicode[STIX]{x1D6E4}\cdot \text{Orb}_{P}(x)$ is dense for every $\unicode[STIX]{x1D6E4}\subset \mathbb{C}$ that either is unbounded or has 0 as an accumulation point. Moreover, we generalize the construction to arbitrary infinite-dimensional separable Banach spaces. To prove this, we study Julia sets of homogeneous polynomials on Banach spaces.
We prove that for each characteristic direction $[v]$ of a tangent to the identity diffeomorphism of order $k+1$ in $(\mathbb{C}^{2},0)$ there exist either an analytic curve of fixed points tangent to $[v]$ or $k$ parabolic manifolds where all the orbits are tangent to $[v]$, and that at least one of these parabolic manifolds is or contains a parabolic curve.
Let $f$ be an $n$-dimensional holomorphic map defined in a neighborhood of the origin such that the origin is an isolated fixed point of all of its iterates, and let ${\mathcal{N}}_{M}(f)$ denote the number of periodic orbits of $f$ of period $M$ hidden at the origin. Gorbovickis gives an efficient way of computing ${\mathcal{N}}_{M}(f)$ for a large class of holomorphic maps. Inspired by Gorbovickis’ work, we establish a similar method for computing ${\mathcal{N}}_{M}(f)$ for a much larger class of holomorphic germs, in particular, having arbitrary Jordan matrices as their linear parts. Moreover, we also give another proof of the result of Gorbovickis [On multi-dimensional Fatou bifurcation. Bull. Sci. Math.138(3)(2014) 356–375] using our method.
Let $f$ be a holomorphic endomorphism of $\mathbb{P}^{2}$ of degree $d\geq 2$. We estimate the local directional dimensions of closed positive currents $S$ with respect to ergodic dilating measures $\unicode[STIX]{x1D708}$. We infer several applications. The first one is an upper bound for the lower pointwise dimension of the equilibrium measure, towards a Binder–DeMarco’s formula for this dimension. The second one shows that every current $S$ containing a measure of entropy $h_{\unicode[STIX]{x1D708}}>\log d$ has a directional dimension ${>}2$, which answers a question of de Thélin–Vigny in a directional way. The last one estimates the dimensions of the Green current of Dujardin’s semi-extremal endomorphisms.
The study of chaotic vibration for multidimensional PDEs due to nonlinear boundary conditions is challenging. In this paper, we mainly investigate the chaotic oscillation of a two-dimensional non-strictly hyperbolic equation due to an energy-injecting boundary condition and a distributed self-regulating boundary condition. By using the method of characteristics, we give a rigorous proof of the onset of the chaotic vibration phenomenon of the zD non-strictly hyperbolic equation. We have also found a regime of the parameters when the chaotic vibration phenomenon occurs. Numerical simulations are also provided.
It was recently shown in Gaidashev and Yampolsky [Golden mean Siegel disk universality and renormalization. Preprint, 2016, arXiv:1604.00717] that appropriately defined renormalizations of a sufficiently dissipative golden-mean semi-Siegel Hénon map converge super-exponentially fast to a one-dimensional renormalization fixed point. In this paper, we show that the asymptotic two-dimensional form of these renormalizations is universal and is parameterized by the average Jacobian. This is similar to the limit behavior of period-doubling renormalizations in the Hénon family considered in de Carvalho et al [Renormalization in the Hénon family, I: universality but non-rigidity. J. Stat. Phys.121 (5/6) (2006), 611–669]. As an application of our result, we prove that the boundary of the golden-mean Siegel disk of a dissipative Hénon map is non-smoothly rigid.
We consider a meromorphic family of endomorphisms of degree at least 2 of a complex projective space that is parameterized by the unit disk. We prove that the measure of maximal entropy of these endomorphisms converges to the equilibrium measure of the associated non-Archimedean dynamical system when the system degenerates. The convergence holds in the hybrid space constructed by Berkovich and further studied by Boucksom and Jonsson. We also infer from our analysis an estimate for the blow-up of the Lyapunov exponent near a pole in one-dimensional families of endomorphisms.
Nous construisons un espace adapté à l’étude de l’entropie des applications méromorphes en utilisant des limites projectives. Nous en déduisons un principe variationnel pour ces applications.
The morphism $f\,:\,{{\mathbb{P}}^{N}}\,\to \,{{\mathbb{P}}^{N}}$ is called post-critically finite $\left( \text{PCF} \right)$ if the forward image of the critical locus, under iteration of $f$, has algebraic support. In the case $N\,=\,1$, a result of Thurston implies that there are no algebraic families of PCF morphisms, other than a well-understood exceptional class known as the flexible Lattés maps. A related arithmetic result states that the set of PCF morphisms corresponds to a set of bounded height in the moduli space of univariate rational functions. We prove corresponding results for a certain subclass of the regular polynomial endomorphisms of ${{\mathbb{P}}^{N}}$ for any $N$.
We show that polarized endomorphisms of rationally connected threefolds with at worst terminal singularities are equivariantly built up from those on ℚ-Fano threefolds, Gorenstein log del Pezzo surfaces and ℙ1. Similar results are obtained for polarized endomorphisms of uniruled threefolds and fourfolds. As a consequence, we show that every smooth Fano threefold with a polarized endomorphism of degree greater than one is rational.
Let F(z) be a rational map with degree at least three. Suppose that there exists an annulus such that (1) H separates two critical points of F, and (2) F:H→F(H) is a homeomorphism. Our goal in this paper is to show how to construct a rational map G by twisting F on H such that G has the same degree as F and, moreover, G has a Herman ring with any given Diophantine type rotation number.