Hostname: page-component-5b777bbd6c-6lqsf Total loading time: 0 Render date: 2025-06-19T15:35:53.407Z Has data issue: false hasContentIssue false

Dynamics of generic automorphisms of Stein manifolds with the density property

Published online by Cambridge University Press:  09 June 2025

LEANDRO AROSIO*
Affiliation:
Dipartimento Di Matematica, https://ror.org/02p77k626Università di Roma ‘Tor Vergata’, Via Della Ricerca Scientifica 1, 00133 Roma, Italy
FINNUR LÁRUSSON
Affiliation:
Discipline of Mathematical Sciences, https://ror.org/00892tw58University of Adelaide, South Australia 5005, Australia (e-mail: finnur.larusson@adelaide.edu.au)

Abstract

We study the dynamics of a generic automorphism f of a Stein manifold with the density property. Such manifolds include almost all linear algebraic groups. Even in the special case of ${\mathbb {C}}^n$, $n\geq 2$, most of our results are new. We study the Julia set, non-wandering set and chain-recurrent set of f. We show that the closure of the set of saddle periodic points of f is the largest forward invariant set on which f is chaotic. This subset of the Julia set of f is also characterized as the closure of the set of transverse homoclinic points of f, and equals the Julia set if and only if a certain closing lemma holds. Among the other results in the paper is a generalization of Buzzard’s holomorphic Kupka–Smale theorem to our setting.

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Arosio, L., Benini, A. M., Fornæss, J. E. and Peters, H.. Dynamics of transcendental Hénon maps. Math. Ann. 373(1–2) (2018), 853894.10.1007/s00208-018-1643-6CrossRefGoogle Scholar
Arosio, L. and Lárusson, F.. Chaotic holomorphic automorphisms of Stein manifolds with the volume density property. J. Geom. Anal. 29 (2019), 17441762.10.1007/s12220-018-0060-0CrossRefGoogle Scholar
Arosio, L. and Lárusson, F.. Generic aspects of holomophic dynamics on highly flexible complex manifolds. Ann. Mat. Pura Appl. (4) 199 (2020), 16971711.10.1007/s10231-019-00938-6CrossRefGoogle Scholar
Arosio, L. and Lárusson, F.. Dynamics of generic endomorphisms of Oka–Stein manifolds. Math. Z. 300 (2022), 24672484.10.1007/s00209-021-02874-9CrossRefGoogle Scholar
Banks, J., Brooks, J., Cairns, G., Davis, G. and Stacey, P.. On Devaney’s definition of chaos. Amer. Math. Monthly 99 (1992), 332334.10.1080/00029890.1992.11995856CrossRefGoogle Scholar
Buzzard, G. T.. Kupka–Smale theorem for automorphisms of ${\mathbb{C}}^{\mathrm{n}}$ . Duke Math. J. 93 (1998), 487503.10.1215/S0012-7094-98-09317-6CrossRefGoogle Scholar
Conley, C.. Isolated Invariant Sets and the Morse Index (CBMS Regional Conference Series in Mathematics, 38). American Mathematical Society, Providence, RI, 1978.10.1090/cbms/038CrossRefGoogle Scholar
Fornæss, J. E. and Sibony, N.. The closing lemma for holomorphic maps. Ergod. Th. & Dynam. Sys. 17 (1997), 821837.10.1017/S0143385797086227CrossRefGoogle Scholar
Forstnerič, F.. Approximation by automorphisms on smooth submanifolds of ${\mathbf{C}}^{n}$ . Math. Ann. 300 (1994), 719738.10.1007/BF01450512CrossRefGoogle Scholar
Forstnerič, F.. Stein Manifolds and Holomorphic Mappings. The Homotopy Principle in Complex Analysis (Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, 56), 2nd edn. Springer, Cham, 2017.10.1007/978-3-319-61058-0CrossRefGoogle Scholar
Forstnerič, F. and Kutzschebauch, F.. The first thirty years of Andersén–Lempert theory. Anal. Math. 48 (2022), 489544.10.1007/s10476-022-0130-1CrossRefGoogle Scholar
Hurley, M.. Noncompact chain recurrence and attraction. Proc. Amer. Math. Soc. 115 (1992), 11391148.10.1090/S0002-9939-1992-1098401-XCrossRefGoogle Scholar
Kaliman, S. and Kutzschebauch, F.. Density property for hypersurfaces $UV=P\left(\overline{X}\right)$ . Math. Z. 258 (2008), 115131.10.1007/s00209-007-0162-zCrossRefGoogle Scholar
Kaliman, S. and Kutzschebauch, F.. Algebraic (volume) density property for affine homogeneous spaces. Math. Ann. 367 (2017), 13111332.10.1007/s00208-016-1451-9CrossRefGoogle Scholar
Palis, J. Jr and de Melo, W.. Geometric Theory of Dynamical Systems. An Introduction. Springer-Verlag, New York, 1982.10.1007/978-1-4612-5703-5CrossRefGoogle Scholar
Peters, H., Vivas, L. R. and Wold, E. F.. Attracting basins of volume preserving automorphisms of ${\mathbb{C}}^{k}$ . Internat. J. Math. 19 (2008), 801810.10.1142/S0129167X08004893CrossRefGoogle Scholar
Touhey, P.. Yet another definition of chaos. Amer. Math. Monthly 104 (1997), 411414.10.1080/00029890.1997.11990658CrossRefGoogle Scholar
Varolin, D.. The density property for complex manifolds and geometric structures. II. Internat. J. Math. 11 (2000), 837847.10.1142/S0129167X00000404CrossRefGoogle Scholar
Winkelmann, J.. Tame discrete sets in algebraic groups. Transf. Groups 26 (2021), 14871519.10.1007/s00031-020-09608-xCrossRefGoogle Scholar