We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we establish a new version of one-dimensional discrete improved Hardy’s inequality with shifts by introducing a shifting discrete Dirichlet’s Laplacian. We prove that the general discrete Hardy’s inequality as well as its variants in some special cases admit improvements. Further, it is proved that two-variable discrete $p$-Hardy inequality can also be improved via improved discrete $p$-Hardy inequality in one dimension. The result is also extended to the multivariable cases.
This article aims to establish fractional Sobolev trace inequalities, logarithmic Sobolev trace inequalities, and Hardy trace inequalities associated with time-space fractional heat equations. The key steps involve establishing dedicated estimates for the fractional heat kernel, regularity estimates for the solution of the time-space fractional equations, and characterizing the norm of $\dot {W}^{\nu /2}_p(\mathbb {R}^n)$ in terms of the solution $u(x,t)$. Additionally, fractional logarithmic Gagliardo–Nirenberg inequalities are proven, leading to $L^p-$logarithmic Sobolev inequalities for $\dot {W}^{\nu /2}_{p}(\mathbb R^{n})$. As a byproduct, Sobolev affine trace-type inequalities for $\dot {H}^{-\nu /2}(\mathbb {R}^n)$ and local Sobolev-type trace inequalities for $Q_{\nu /2}(\mathbb {R}^n)$ are established.
We establish a new improvement of the classical Lp-Hardy inequality on the multidimensional Euclidean space in the supercritical case. Recently, in [14], there has been a new kind of development of the one-dimensional Hardy inequality. Using some radialisation techniques of functions and then exploiting symmetric decreasing rearrangement arguments on the real line, the new multidimensional version of the Hardy inequality is given. Some consequences are also discussed.
In this paper, by the introduction of several parameters, we construct a new kernel function which is defined in the whole plane and includes some classical kernel functions. Estimating the weight functions with the techniques of real analysis, we establish a new Hilbert-type inequality in the whole plane, and the constant factor of the newly obtained inequality is proved to be the best possible. Additionally, by means of the partial fraction expansion of the tangent function, some special and interesting inequalities are presented at the end of the paper.
In this paper we obtain some improved
$L^p$
-Hardy and
$L^p$
-Rellich inequalities on bounded domains of Riemannian manifolds. For Cartan–Hadamard manifolds we prove the inequalities with sharp constants and with weights being hyperbolic functions of the Riemannian distance.
Weight criteria for embedding of the weighted Sobolev–Lorentz spaces to the weighted Besov–Lorentz spaces built upon certain mixed norms and iterated rearrangement are investigated. This gives an improvement of some known Sobolev embedding. We achieve the result based on different norm inequalities for the weighted Besov–Lorentz spaces defined in some mixed norms.
The notion of the capacity of a polynomial was introduced by Gurvits around 2005, originally to give drastically simplified proofs of the van der Waerden lower bound for permanents of doubly stochastic matrices and Schrijver’s inequality for perfect matchings of regular bipartite graphs. Since this seminal work, the notion of capacity has been utilised to bound various combinatorial quantities and to give polynomial-time algorithms to approximate such quantities (e.g. the number of bases of a matroid). These types of results are often proven by giving bounds on how much a particular differential operator can change the capacity of a given polynomial. In this paper, we unify the theory surrounding such capacity-preserving operators by giving tight capacity preservation bounds for all nondegenerate real stability preservers. We then use this theory to give a new proof of a recent result of Csikvári, which settled Friedland’s lower matching conjecture.
We first establish a family of sharp Caffarelli–Kohn–Nirenberg type inequalities (shortly, sharp CKN inequalities) on the Euclidean spaces and then extend them to the setting of Cartan–Hadamard manifolds with the same best constant. The quantitative version of these inequalities also is proved by adding a non-negative remainder term in terms of the sectional curvature of manifolds. We next prove several rigidity results for complete Riemannian manifolds supporting the Caffarelli–Kohn–Nirenberg type inequalities with the same sharp constant as in the Euclidean space of the same dimension. Our results illustrate the influence of curvature to the sharp CKN inequalities on the Riemannian manifolds. They extend recent results of Kristály (J. Math. Pures Appl. 119 (2018), 326–346) to a larger class of the sharp CKN inequalities.
The article is devoted to Hardy type inequalities on closed manifolds. By means of various weighted Ricci curvatures, we establish several sharp Hardy type inequalities on closed weighted Riemannian manifolds. Our results complement in several aspects those obtained recently in the non-compact Riemannian setting.
Barnard and Steinerberger [‘Three convolution inequalities on the real line with connections to additive combinatorics’, Preprint, 2019, arXiv:1903.08731] established the autocorrelation inequality
where the constant $0.411$ cannot be replaced by $0.37$. In addition to being interesting and important in their own right, inequalities such as these have applications in additive combinatorics. We show that for $f$ to be extremal for this inequality, we must have
Our central technique for deriving this result is local perturbation of $f$ to increase the value of the autocorrelation, while leaving $||f||_{L^{1}}$ unchanged. These perturbation methods can be extended to examine a more general notion of autocorrelation. Let $d,n\in \mathbb{Z}^{+}$, $f\in L^{1}$, $A$ be a $d\times n$ matrix with real entries and columns $a_{i}$ for $1\leq i\leq n$ and $C$ be a constant. For a broad class of matrices $A$, we prove necessary conditions for $f$ to extremise autocorrelation inequalities of the form
We completely characterize the validity of the inequality $\| u \|_{Y(\mathbb R)} \leq C \| \nabla^{m} u \|_{X(\mathbb R)}$, where X and Y are rearrangement-invariant spaces, by reducing it to a considerably simpler one-dimensional inequality. Furthermore, we fully describe the optimal rearrangement-invariant space on either side of the inequality when the space on the other side is fixed. We also solve the same problem within the environment in which the competing spaces are Orlicz spaces. A variety of examples involving customary function spaces suitable for applications is also provided.
We present some inequalities for the mappings defined by Dragomir [‘Two mappings in connection to Hadamard’s inequalities’, J. Math. Anal. Appl.167 (1992), 49–56]. We analyse known inequalities connected with these mappings using a recently developed method connected with stochastic orderings and Stieltjes integrals. We show that some of these results are optimal and others may be substantially improved.
We establish inequalities of Jensen’s and Slater’s type in the general setting of a Hermitian unital Banach $\ast$-algebra, analytic convex functions and positive normalised linear functionals.
In this paper, we prove several new Hardy type inequalities (such as the weighted Hardy inequality, weighted Rellich inequality, critical Hardy inequality and critical Rellich inequality) related to the radial derivation (i.e., the derivation along the geodesic curves) on the Cartan–Hadamard manifolds. By Gauss lemma, our new Hardy inequalities are stronger than the classical ones. We also establish the improvements of these inequalities in terms of sectional curvature of the underlying manifolds which illustrate the effect of curvature to these inequalities. Furthermore, we obtain some improvements of Hardy and Rellich inequalities on the hyperbolic space ℍn. Especially, we show that our new Rellich inequalities are indeed stronger than the classical ones on the hyperbolic space ℍn.
The Hardy-Rellich inequality in the whole space with the best constant was firstly proved by Tertikas and Zographopoulos in Adv. Math. (2007) in higher dimensions N ⩾ 5. Then it was extended to lower dimensions N ∈ {3, 4} by Beckner in Forum Math. (2008) and Ghoussoub-Moradifam in Math. Ann. (2011) by applying totally different techniques.
In this note, we refine the method implemented by Tertikas and Zographopoulos, based on spherical harmonics decomposition, to give an easy and compact proof of the optimal Hardy–Rellich inequality in any dimension N ⩾ 3. In addition, we provide minimizing sequences which were not explicitly mentioned in the quoted papers in lower dimensions N ∈ {3, 4}, emphasizing their symmetry breaking. We also show that the best constant is not attained in the proper functional space.
We prove optimal improvements of the Hardy inequality on the hyperbolic space. Here, optimal means that the resulting operator is critical in the sense of Devyver, Fraas, and Pinchover (2014), namely the associated inequality cannot be further improved. Such inequalities arise from more general, optimal ones valid for the operator $ P_{\lambda }:= -\Delta _{{\open H}^{N}} - \lambda $ where 0 ⩽ λ ⩽ λ1(ℍN) and λ1(ℍN) is the bottom of the L2 spectrum of $-\Delta _{{\open H}^{N}} $, a problem that had been studied in Berchio, Ganguly, and Grillo (2017) only for the operator $P_{\lambda _{1}({\open H}^{N})}$. A different, critical and new inequality on ℍN, locally of Hardy type is also shown. Such results have in fact greater generality since they are proved on general Cartan-Hadamard manifolds under curvature assumptions, possibly depending on the point. Existence/nonexistence of extremals for the related Hardy-Poincaré inequalities are also proved using concentration-compactness technique and a Liouville comparison theorem. As applications of our inequalities, we obtain an improved Rellich inequality and we derive a quantitative version of Heisenberg-Pauli-Weyl uncertainty principle for the operator $P_\lambda.$
Let ρ be a monotone quasinorm defined on ${\rm {\frak M}}^ + $, the set of all non-negative measurable functions on [0, ∞). Let T be a monotone quasilinear operator on ${\rm {\frak M}}^ + $. We show that the following inequality restricted on the cone of λ-quasiconcave functions
where $1\les p\les \infty $ and v is a weighted function, is equivalent to slightly different inequalities considered for all non-negative measurable functions. The case 0 < p < 1 is also studied for quasinorms and operators with additional properties. These results in turn enable us to establish necessary and sufficient conditions on the weights (u, v, w) for which the three weighted Hardy-type inequality
We prove that if p > 1, $w\in A_p^ +$, b ∈ CMO and $C_b^ + $ is the commutator with symbol b of a Calderón–Zygmund convolution singular integral with kernel supported on (−∞, 0), then $C_b^ + $ is compact from Lp(w) into itself.
In this paper, we introduce the definition of a convex real valued function $f$ defined on the set of integers, $\mathbb{Z}$. We prove that $f$ is convex on $\mathbb{Z}$ if and only if ${{\Delta }^{2}}f\,\ge \,0$ on $\mathbb{Z}$. As a first application of this new concept, we state and prove discrete Hermite–Hadamard inequality using the basics of discrete calculus (i.e., the calculus on $\mathbb{Z}$). Second, we state and prove the discrete fractional Hermite–Hadamard inequality using the basics of discrete fractional calculus. We close the paper by defining the convexity of a real valued function on any time scale.
is true for any vectors $x,y$ and a projection $P:H\rightarrow H$. Applications to norm and numerical radius inequalities of two bounded operators are given.