We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this article, $\mathcal{F}_{S}(G)$ denotes the fusion category of G on a Sylow p-subgroup S of G where p denotes a prime. A subgroup K of G has normal complement in G if there is a normal subgroup T of G satisfying that G = KT and $T \cap K = 1$. We investigate the supersolvability of $\mathcal{F}_{S}(G)$ under the assumption that some subgroups of S are normal in G or have normal complement in G.
We obtain an adaptation of Dade’s Conjecture and Späth’s Character Triple Conjecture to unipotent characters of simple, simply connected finite reductive groups of type $\mathbf {A}$, $\mathbf {B}$ and $\mathbf {C}$. In particular, this gives a precise formula for counting the number of unipotent characters of each defect d in any Brauer $\ell $-block B in terms of local invariants associated to e-local structures. This provides a geometric version of the local-global principle in representation theory of finite groups. A key ingredient in our proof is the construction of certain parametrisations of unipotent generalised Harish-Chandra series that are compatible with isomorphisms of character triples.
We establish a McKay correspondence for finite and linearly reductive subgroup schemes of ${\mathbf {SL}}_2$ in positive characteristic. As an application, we obtain a McKay correspondence for all rational double point singularities in characteristic $p\geq 7$. We discuss linearly reductive quotient singularities and canonical lifts over the ring of Witt vectors. In dimension 2, we establish simultaneous resolutions of singularities of these canonical lifts via G-Hilbert schemes. In the appendix, we discuss several approaches towards the notion of conjugacy classes for finite group schemes: This is an ingredient in McKay correspondences, but also of independent interest.
This is a contribution to the study of $\mathrm {Irr}(G)$ as an $\mathrm {Aut}(G)$-set for G a finite quasisimple group. Focusing on the last open case of groups of Lie type $\mathrm {D}$ and $^2\mathrm {D}$, a crucial property is the so-called $A'(\infty )$ condition expressing that diagonal automorphisms and graph-field automorphisms of G have transversal orbits in $\mathrm {Irr}(G)$. This is part of the stronger $A(\infty )$ condition introduced in the context of the reduction of the McKay conjecture to a question about quasisimple groups. Our main theorem is that a minimal counterexample to condition $A(\infty )$ for groups of type $\mathrm {D}$ would still satisfy $A'(\infty )$. This will be used in a second paper to fully establish $A(\infty )$ for any type and rank. The present paper uses Harish-Chandra induction as a parametrization tool. We give a new, more effective proof of the theorem of Geck and Lusztig ensuring that cuspidal characters of any standard Levi subgroup of $G=\mathrm {D}_{ l,\mathrm {sc}}(q)$ extend to their stabilizers in the normalizer of that Levi subgroup. This allows us to control the action of automorphisms on these extensions. From there, Harish-Chandra theory leads naturally to a detailed study of associated relative Weyl groups and other extendibility problems in that context.
We prove that there exists a universal constant D such that if p is a prime divisor of the index of the Fitting subgroup of a finite group G, then the number of conjugacy classes of G is at least $Dp/\log_2p$. We conjecture that we can take $D=1$ and prove that for solvable groups, we can take $D=1/3$.
To each pair consisting of a saturated fusion system over a p-group together with a compatible family of Külshammer-Puig cohomology classes, one can count weights in a hypothetical block algebra arising from these data. When the pair arises from a genuine block of a finite group algebra in characteristic p, the number of conjugacy classes of weights is supposed to be the number of simple modules in the block. We show that there is unique such pair associated with each Benson-Solomon exotic fusion system, and that the number of weights in a hypothetical Benson-Solomon block is
$12$
, independently of the field of definition. This is carried out in part by listing explicitly up to conjugacy all centric radical subgroups and their outer automorphism groups in these systems.
We compute the trivial source character tables (also called species tables of the trivial source ring) of the infinite family of finite groups $\operatorname{SL}_{2}(q)$ for q even over a large enough field of odd characteristics. This article is a continuation of our article Trivial Source Character Tables of$\operatorname{SL}_{2}(q)$, where we considered, in particular, the case in which q is odd in non-defining characteristic.
The Frobenius–Schur indicators of characters in a real $2$-block with dihedral defect groups have been determined by Murray [‘Real subpairs and Frobenius–Schur indicators of characters in 2-blocks’, J. Algebra322 (2009), 489–513]. We show that two infinite families described in his work do not exist and we construct examples for the remaining families. We further present some partial results on Frobenius–Schur indicators of characters in other tame blocks.
For a finite abelian p-group A and a subgroup $\Gamma \le \operatorname {\mathrm {Aut}}(A)$, we say that the pair $(\Gamma ,A)$ is fusion realizable if there is a saturated fusion system ${\mathcal {F}}$ over a finite p-group $S\ge A$ such that $C_S(A)=A$, $\operatorname {\mathrm {Aut}}_{{\mathcal {F}}}(A)=\Gamma $ as subgroups of $\operatorname {\mathrm {Aut}}(A)$, and . In this paper, we develop tools to show that certain representations are not fusion realizable in this sense. For example, we show, for $p=2$ or $3$ and $\Gamma $ one of the Mathieu groups, that the only ${\mathbb {F}}_p\Gamma $-modules that are fusion realizable (up to extensions by trivial modules) are the Todd modules and in some cases their duals.
We consider rational representations of a connected linear algebraic group $\mathbb {G}$ over a field $k$ of positive characteristic $p > 0$. We introduce a natural extension $M \mapsto \Pi (\mathbb {G})_M$ to $\mathbb {G}$-modules of the $\pi$-point support theory for modules $M$ for a finite group scheme $G$ and show that this theory is essentially equivalent to the more ‘intrinsic’ and ‘explicit’ theory $M \mapsto \mathbb {P}\mathfrak{C}(\mathbb {G})_M$ of supports for an algebraic group of exponential type, a theory which uses $1$-parameter subgroups $\mathbb {G}_a \to \mathbb {G}$. We extend our support theory to bounded complexes of $\mathbb {G}$-modules, $C^\bullet \mapsto \Pi (\mathbb {G})_{C^\bullet }$. We introduce the tensor triangulated category $\mathit {StMod}(\mathbb {G})$, the Verdier quotient of the bounded derived category $D^b(\mathit {Mod}(\mathbb {G}))$ by the thick subcategory of mock injective modules. Our support theory satisfies all the ‘standard properties’ for a theory of supports for $\mathit {StMod}(\mathbb {G})$. As an application, we employ $C^\bullet \mapsto \Pi (\mathbb {G})_{C^\bullet }$ to establish the classification of $(r)$-complete, thick tensor ideals of $\mathit {stmod}(\mathbb {G})$ in terms of locally $\mathit {stmod}(\mathbb {G})$-realizable subsets of $\Pi (\mathbb {G})$ and the classification of $(r)$-complete, localizing subcategories of $\mathit {StMod}(\mathbb {G})$ in terms of locally $\mathit {StMod}(\mathbb {G})$-realizable subsets of $\Pi (\mathbb {G})$.
Let k be an algebraically closed field of prime characteristic p. Let
$kGe$
be a block of a group algebra of a finite group G, with normal defect group P and abelian
$p'$
inertial quotient L. Then we show that
$kGe$
is a matrix algebra over a quantised version of the group algebra of a semidirect product of P with a certain subgroup of L. To do this, we first examine the associated graded algebra, using a Jennings–Quillen style theorem.
As an example, we calculate the associated graded of the basic algebra of the nonprincipal block in the case of a semidirect product of an extraspecial p-group P of exponent p and order
$p^3$
with a quaternion group of order eight with the centre acting trivially. In the case of
$p=3$
, we give explicit generators and relations for the basic algebra as a quantised version of
$kP$
. As a second example, we give explicit generators and relations in the case of a group of shape
$2^{1+4}:3^{1+2}$
in characteristic two.
We prove that if a solvable group A acts coprimely on a solvable group G, then A has a relatively ‘large’ orbit in its corresponding action on the set of ordinary complex irreducible characters of G. This improves an earlier result of Keller and Yang [‘Orbits of finite solvable groups on characters’, Israel J. Math.199 (2014), 933–940].
The Alperin–McKay conjecture is a longstanding open conjecture in the representation theory of finite groups. Späth showed that the Alperin–McKay conjecture holds if the so-called inductive Alperin–McKay (iAM) condition holds for all finite simple groups. In a previous paper, the author has proved that it is enough to verify the inductive condition for quasi-isolated blocks of groups of Lie type. In this paper, we show that the verification of the iAM-condition can be further reduced in many cases to isolated blocks. As a consequence of this, we obtain a proof of the Alperin–McKay conjecture for
$2$
-blocks of finite groups with abelian defect.
Similarly to the Frobenius–Schur indicator of irreducible characters, we consider higher Frobenius–Schur indicators
$\nu _{p^n}(\chi ) = |G|^{-1} \sum _{g \in G} \chi (g^{p^n})$
for primes p and
$n \in \mathbb {N}$
, where G is a finite group and
$\chi $
is a generalised character of G. These invariants give answers to interesting questions in representation theory. In particular, we give several characterisations of groups via higher Frobenius–Schur indicators.
In this paper, we study the relation of the size of the class two quotients of a linear group and the size of the vector space. We answer a question raised in Keller and Yang [Class 2 quotients of solvable linear groups, J. Algebra 509 (2018), 386-396].
We present a sufficient condition for the $kG$-Scott module with vertex $P$ to remain indecomposable under the Brauer construction for any subgroup $Q$ of $P$ as $k[Q\,C_G(Q)]$-module, where $k$ is a field of characteristic $2$, and $P$ is a semidihedral $2$-subgroup of a finite group $G$. This generalizes results for the cases where $P$ is abelian or dihedral. The Brauer indecomposability is defined by R. Kessar, N. Kunugi and N. Mitsuhashi. The motivation of this paper is the fact that the Brauer indecomposability of a $p$-permutation bimodule (where $p$ is a prime) is one of the key steps in order to obtain a splendid stable equivalence of Morita type by making use of the gluing method due to Broué, Rickard, Linckelmann and Rouquier, that then can possibly be lifted to a splendid derived (splendid Morita) equivalence.
In this note, we compute the centers of the categories of tilting modules for G = SL2 in prime characteristic, of tilting modules for the corresponding quantum group at a complex root of unity, and of projective GgT-modules when g = 1, 2.
We establish the inductive blockwise Alperin weight condition for simple groups of Lie type
$\mathsf C$
and the bad prime
$2$
. As a main step, we derive a labelling set for the irreducible
$2$
-Brauer characters of the finite symplectic groups
$\operatorname {Sp}_{2n}(q)$
(with odd q), together with the action of automorphisms. As a further important ingredient, we prove a Jordan decomposition for weights.
Isaacs and Seitz conjectured that the derived length of a finite solvable group $G$ is bounded by the cardinality of the set of all irreducible character degrees of $G$. We prove that the conjecture holds for $G$ if the degrees of nonlinear monolithic characters of $G$ having the same kernels are distinct. Also, we show that the conjecture is true when $G$ has at most three nonlinear monolithic characters. We give some sufficient conditions for the inequality related to monolithic characters or real-valued irreducible characters of $G$ when the commutator subgroup of $G$ is supersolvable.
Let $F$ be a $p$-adic field and choose $k$ an algebraic closure of $\mathbb{F}_{\ell }$, with $\ell$ different from $p$. We define “nilpotent lifts” of irreducible generic $k$-representations of $GL_{n}(F)$, which take coefficients in Artin local $k$-algebras. We show that an irreducible generic $\ell$-modular representation $\unicode[STIX]{x1D70B}$ of $GL_{n}(F)$ is uniquely determined by its collection of Rankin–Selberg gamma factors $\unicode[STIX]{x1D6FE}(\unicode[STIX]{x1D70B}\times \widetilde{\unicode[STIX]{x1D70F}},X,\unicode[STIX]{x1D713})$ as $\widetilde{\unicode[STIX]{x1D70F}}$ varies over nilpotent lifts of irreducible generic $k$-representations $\unicode[STIX]{x1D70F}$ of $GL_{t}(F)$ for $t=1,\ldots ,\lfloor \frac{n}{2}\rfloor$. This gives a characterization of the mod-$\ell$ local Langlands correspondence in terms of gamma factors, assuming it can be extended to a surjective local Langlands correspondence on nilpotent lifts.