Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T00:12:48.816Z Has data issue: false hasContentIssue false

Trivial source character tables of $\operatorname{SL}_2(q)$, part II

Published online by Cambridge University Press:  30 June 2023

Niamh Farrell
Affiliation:
Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Leibniz Universität Hannover, Hannover, Germany (farrell@math.uni-hannover.de)
Caroline Lassueur
Affiliation:
FB Mathematik, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany (lassueur@mathematik.uni-kl.de)

Abstract

We compute the trivial source character tables (also called species tables of the trivial source ring) of the infinite family of finite groups $\operatorname{SL}_{2}(q)$ for q even over a large enough field of odd characteristics. This article is a continuation of our article Trivial Source Character Tables of $\operatorname{SL}_{2}(q)$, where we considered, in particular, the case in which q is odd in non-defining characteristic.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benson, D. J., Modular representation theory: new trends and methods, Lecture Notes in Mathematics, Volume 1081 (Springer-Verlag, Berlin, 1984).Google Scholar
Benson, D. J., Representations and cohomology I, Cambridge Studies in Advanced Mathematics, 2nd edn., Volume 30 (Cambridge University Press, Cambridge, 1998).Google Scholar
Benson, D. J. and Parker, R. A., The Green ring of a finite group, J. Algebra 87 (1984), 290331.CrossRefGoogle Scholar
Böhmler, B., Farrell, N. and Lassueur, C., Trivial source character tables of $\rm SL_2(q)$, J. Algebra 598 (2022), 308350.CrossRefGoogle Scholar
Bonnafé, C., Representations of $\rm SL_2(\mathbb{F}_q)$, Algebra and Applications, Volume 13 (Springer-Verlag London, Ltd, London, 2011).Google Scholar
Burkhardt, R., Die Zerlegungsmatrizen der Gruppen $\rm PSL(2,p^f)$, J. Algebra 40 (1976), 7596.CrossRefGoogle Scholar
Hiss, G. and Lassueur, C., The classification of the trivial source modules in blocks with cyclic defect groups, Algebr. Represent. Theory 24 (2021), 673698.CrossRefGoogle Scholar
Hiss, G. and Lassueur, C., On the source algebra equivalence class of blocks with cyclic defect groups, I, Beitr. Algebra Geom. (2023), 10.1007/s13366-022-00681-9.CrossRefGoogle Scholar
Lassueur, C., A tour of p-permutation modules and related classes of modules, Jahresber. Dtsch. Math.-Ver. (2023), 10.1365/s13291-023-00266-y.CrossRefGoogle Scholar
Linckelmann, M., The isomorphism problem for cyclic blocks and their source algebras, Invent. Math. 125 (1996), 265283.CrossRefGoogle Scholar
Linckelmann, M., The block theory of finite group algebras, London Mathematical Society Student Texts 92, Volume II (Cambridge University Press, Cambridge, 2018).Google Scholar
Lux, K. and Pahlings, H., Representations of groups, Cambridge Studies in Advanced Mathematics, Volume 124 (Cambridge University Press, Cambridge, 2010).CrossRefGoogle Scholar
Schulte, E., Simple endotrivial modules for finite simple groups. Diplomarbeit, TU Kaiserslautern, 2012.Google Scholar
Thévenaz, J., G-algebras and modular representation theory, Oxford Mathematical Monographs (The Clarendon Press, Oxford University Press, New York, 1995).Google Scholar