To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let ${\mathrm {U}}_n({\mathbb {F}}_q)$ be the unitriangular group and ${\mathrm {U}}_{a,b,c,d}({\mathbb {F}}_q)$ the four-block unipotent radical of the standard parabolic subgroup of $\mathrm {GL}_{n}$, where $a+b+c+d=n$. In this paper, we study the class of all pattern subgroups of ${\mathrm {U}}_{a,b,c,d}({\mathbb {F}}_{q})$. We establish character-number formulae of degree $q^e$ for all these pattern groups. For pattern subgroups $G_{{\mathcal {D}}_m}({\mathbb {F}}_q)$ in this class, we provide an algebraic geometric approach to their polynomial properties, which verifies an analogue of Lehrer’s conjecture for these pattern groups.
The blow-up of the anticanonical base point on a del Pezzo surface S of degree 1 gives rise to a rational elliptic surface $\mathscr {E}$ with only irreducible fibers. The sections of minimal height of $\mathscr {E}$ are in correspondence with the $240$ exceptional curves on S. A natural question arises when studying the configuration of these curves: if a point on S is contained in “many” exceptional curves, is it torsion on its fiber on $\mathscr {E}$? In 2005, Kuwata proved for the analogous question on del Pezzo surfaces of degree $2$, where there are 56 exceptional curves, that if “many” equals $4$ or more, the answer is yes. In this paper, we prove that for del Pezzo surfaces of degree 1, the answer is yes if ‘many’ equals $9$ or more. Moreover, we give counterexamples where a non-torsion point lies in the intersection of $7$ exceptional curves. We give partial results for the still open case of 8 intersecting exceptional curves.
Given any smooth germ of a 3-fold flopping contraction, we first give a combinatorial characterisation of which Gopakumar–Vafa (GV) invariants are non-zero, by prescribing multiplicities to the walls in the movable cone. On the Gromov–Witten (GW) side, this allows us to describe, and even draw, the critical locus of the associated quantum potential. We prove that the critical locus is the infinite hyperplane arrangement of Iyama and the second author and, moreover, that the quantum potential can be reconstructed from a finite fundamental domain. We then iterate, obtaining a combinatorial description of the matrix that controls the transformation of the non-zero GV invariants under a flop. There are three main ingredients and applications: (1) a construction of flops from simultaneous resolution via cosets, which describes how the dual graph changes; (2) a closed formula, which describes the change in dimension of the contraction algebra under flop; and (3) a direct and explicit isomorphism between quantum cohomologies of different crepant resolutions, giving a Coxeter-style, visual proof of the Crepant Transformation Conjecture for isolated cDV singularities.
We provide an explicit formula for all primary genus-zero $r$-spin invariants. Our formula is piecewise polynomial in the monodromies at each marked point and in $r$. To deduce the structure of these invariants, we use a tropical realisation of the corresponding cohomological field theories. We observe that the collection of all Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) relations is equivalent to the relations deduced from the fact that genus-zero tropical CohFT cycles are balanced.
We study the enumerativity of Gromov–Witten invariants where the domain curve is fixed in moduli and required to pass through the maximum possible number of points. We say a Fano manifold satisfies asymptotic enumerativity if such invariants are enumerative whenever the degree of the curve is sufficiently large. Lian and Pandharipande speculate that every Fano manifold satisfies asymptotic enumerativity. We give the first counterexamples, as well as some new examples where asymptotic enumerativity holds. The negative examples include special hypersurfaces of low Fano index and certain projective bundles, and the new positive examples include many Fano threefolds and all smooth hypersurfaces of degree $d \leq (n+3)/3$ in ${\mathbb P}^n$.
This paper is the first part in a series of three papers devoted to the study of enumerative invariants of abelian surfaces through the tropical approach. In this paper, we consider the enumeration of genus g curves of fixed degree passing through g points. We compute the tropical multiplicity provided by a correspondence theorem due to T. Nishinou and show that it is possible to refine this multiplicity in the style of the Block–Göttsche refined multiplicity to get tropical refined invariants.
We compare two partitions of real bitangents to smooth plane quartics into sets of 4: one coming from the closures of connected components of the avoidance locus and another coming from tropical geometry. When both are defined, we use the Tarski principle for real closed fields in combination with the topology of real plane quartics and the tropical geometry of bitangents and theta characteristics to show that they coincide.
We use the tropical geometry approach to compute absolute and relative enumerative invariants of complex surfaces which are $\mathbb {C} P^1$-bundles over an elliptic curve. We also show that the tropical multiplicity used to count curves can be refined by the standard Block–Göttsche refined multiplicity to give tropical refined invariants. We then give a concrete algorithm using floor diagrams to compute these invariants along with the associated interpretation as operators acting on some Fock space. The floor diagram algorithm allows one to prove the piecewise polynomiality of the relative invariants, and the quasi-modularity of their generating series.
We address Hodge integrals over the hyperelliptic locus. Recently Afandi computed, via localisation techniques, such one-descendant integrals and showed that they are Stirling numbers. We give another proof of the same statement by a very short argument, exploiting Chern classes of spin structures and relations arising from Topological Recursion in the sense of Eynard and Orantin.
These techniques seem also suitable to deal with three orthogonal generalisations: (1) the extension to the r-hyperelliptic locus; (2) the extension to an arbitrary number of non-Weierstrass pairs of points; (3) the extension to multiple descendants.
In this paper, we prove a series of identities of the quasi-map K-theoretical I-functions with level structure between the Grassmannian and its dual Grassmannian. Those identities prove the quantum K-theory version mutation conjecture stated in [13]. Here we find an interval of levels within which two I-functions are the same, and on the boundary of that interval, two I-functions intertwine. We call this phenomenon the level correspondence in Grassmann duality.
We propose two systems of “intrinsic” weights for counting such curves. In both cases the result acquires an exceptionally strong invariance property: it does not depend on the choice of a surface. One of our counts includes all divisor classes of canonical degree 2 and gives in total 30. The other one excludes the class $-2K$, but adds up the results of counting for a pair of real structures that differ by Bertini involution. This count gives 96.
The moduli space of canonical divisors (with prescribed zeros and poles) on nonsingular curves is not compact since the curve may degenerate. We define a proper moduli space of twisted canonical divisors in $\overline{{\mathcal{M}}}_{g,n}$ which includes the space of canonical divisors as an open subset. The theory leads to geometric/combinatorial constraints on the closures of the moduli spaces of canonical divisors.
In case the differentials have at least one pole (the strictly meromorphic case), the moduli spaces of twisted canonical divisors on genus $g$ curves are of pure codimension $g$ in $\overline{{\mathcal{M}}}_{g,n}$. In addition to the closure of the canonical divisors on nonsingular curves, the moduli spaces have virtual components. In the Appendix A, a complete proposal relating the sum of the fundamental classes of all components (with intrinsic multiplicities) to a formula of Pixton is proposed. The result is a precise and explicit conjecture in the tautological ring for the weighted fundamental class of the moduli spaces of twisted canonical divisors.
As a consequence of the conjecture, the classes of the closures of the moduli spaces of canonical divisors on nonsingular curves are determined (both in the holomorphic and meromorphic cases).
Using limit linear series and a result controlling degeneration from separable maps to inseparable maps, we give a formula for the number of rational functions (up to automorphism of the target) on the projective line with ramification to order ei at general points Pi, in the case that all ei are less than the characteristic. Unlike the case of characteristic 0, the answer is not given by Schubert calculus, nor is the number of maps always finite for distinct Pi, even in the tamely ramified case. However, finiteness for general Pi, obtained by exploiting the relationship to branched covers, is a key part of the argument.
We study some global aspects of differential complex 2-forms and 3-forms on complex manifolds. We compute the cohomology classes represented by the sets of points on a manifold where such a form degenerates in various senses, together with other similar cohomological obstructions. Based on these results and a formula for projective representations, we calculate the degree of the projectivization of certain orbits of the representation ${{\Lambda }^{k}}{{\mathbb{C}}^{n}}$
given a family x/b of nodal curves we construct canonically and compatibly with base-change, via an explicit blow-up of the cartesian product xr/b, a family wr(x/b) that we show is isomorphic to the relative flag hilbert scheme parametrizing flags of subschemes of fibres of x/b with colengths $1,\dotsc,r$. although wr(x/b) is singular, the important sheaves on it are locally free, which allows us to study some intersection theory on it and deduce enumerative applications, including some relative multiple point formulae enumerating the length-r schemes contained simultaneously in some fibre of x/b and some fibre of a given map from x to a smooth variety.
The characteristic numbers of smooth plane quartics are computed using intersection theory on a component of the moduli space of stable maps. This completes the verification of Zeuthen’s prediction of characteristic numbers of smooth plane curves. A short sketch of a computation of the characteristic numbers of plane cubics is also given as an illustration.
Here we give examples and classifications of varieties with strange behaviour for the enumeration of contacts (answering a question raised by Fulton, Kleiman, MacPherson). Then we give upper and lower bounds (in terms of the degree) for the non-zero ranks of a projective variety.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.