Let
$S\,=\,K\left[ {{x}_{1}},\,\ldots \,,\,{{x}_{n}} \right]$ be the polynomial ring in
$n$ -variables over a field
$K$ and
$I$ a monomial ideal of
$S$ . According to one standard primary decomposition of
$I$ , we get a Stanley decomposition of the monomial factor algebra
$S/I$ . Using this Stanley decomposition, one can estimate the Stanley depth of
$S/I$ . It is proved that
$\text{sdept}{{\text{h}}_{s}}\left( S/I \right)\,\ge \,\text{siz}{{\text{e}}_{S}}\left( I \right)$ . When
$I$ is squarefree and
$\text{bigsiz}{{\text{e}}_{S}}\left( I \right)\,\le \,2$ , the Stanley conjecture holds for
$S/I$ , i.e.,
$\text{sdept}{{\text{h}}_{S}}\left( S/I \right)\ge \text{dept}{{\text{h}}_{S}}\left( S/I \right)$ .