To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $K = \mathbf {R}$ or $\mathbf {C}$. An n-element subset A of K is a $B_h$-set if every element of K has at most one representation as the sum of h not necessarily distinct elements of A. Associated with the $B_h$-set $A = \{a_1,\ldots , a_n\}$ are the $B_h$-vectors $\mathbf {a} = (a_1,\ldots , a_n)$ in $K^n$. This article proves that “almost all” n-element subsets of K are $B_h$-sets in the sense that the set of all $B_h$-vectors is a dense open subset of $K^n$.
A class of sequences called L-sequences is introduced, each one being a subsequence of a Collatz sequence. Every ordered pair $(v,w)$ of positive integers determines an odd positive integer P such that there exists an L-sequence of length n for every positive integer n, each term of which is congruent to P modulo $2^{v+w+1}$. The smallest possible initial term of such a sequence is described. If $3^v>2^{v+w}$ the L-sequence is increasing. Otherwise, it is decreasing, except if it is the constant sequence P. A central role is played by Bezout’s identity.
We study linear random walks on the torus and show a quantitative equidistribution statement, under the assumption that the Zariski closure of the acting group is semisimple.
It was asked by E. Szemerédi if, for a finite set $A\subset {\mathbb {Z}}$, one can improve estimates for $\max \{|A+A|,|A\cdot A|\}$, under the constraint that all integers involved have a bounded number of prime factors, that is, each $a\in A$ satisfies $\omega (a)\leq k$. In this paper we show that this maximum is at least of order $|A|^{\frac {5}{3}-o_\epsilon (1)}$ provided $k\leq (\log |A|)^{1-\varepsilon }$ for any $\varepsilon \gt 0$. In fact, this will follow from an estimate for additive energy which is best possible up to factors of size $|A|^{o(1)}$.
The triangle removal states that if G contains $\varepsilon n^2$ edge-disjoint triangles, then G contains $\delta (\varepsilon )n^3$ triangles. Unfortunately, there are no sensible bounds on the order of growth of $\delta (\varepsilon )$, and at any rate, it is known that $\delta (\varepsilon )$ is not polynomial in $\varepsilon $. Csaba recently obtained an asymmetric variant of the triangle removal, stating that if G contains $\varepsilon n^2$ edge-disjoint triangles, then G contains $2^{-\operatorname {\mathrm {poly}}(1/\varepsilon )}\cdot n^5$ copies of $C_5$. To this end, he devised a new variant of Szemerédi’s regularity lemma. We obtain the following results:
• We first give a regularity-free proof of Csaba’s theorem, which improves the number of copies of $C_5$ to the optimal number $\operatorname {\mathrm {poly}}(\varepsilon )\cdot n^5$.
• We say that H is $K_3$-abundant if every graph containing $\varepsilon n^2$ edge-disjoint triangles has $\operatorname {\mathrm {poly}}(\varepsilon )\cdot n^{\lvert V(H)\rvert }$ copies of H. It is easy to see that a $K_3$-abundant graph must be triangle-free and tripartite. Given our first result, it is natural to ask if all triangle-free tripartite graphs are $K_3$-abundant. Our second result is that assuming a well-known conjecture of Ruzsa in additive number theory, the answer to this question is negative.
Our proofs use a mix of combinatorial, number-theoretic, probabilistic and Ramsey-type arguments.
Erdös and Selfridge first showed that the product of consecutive integers cannot be a perfect power. Later, this result was generalized to polynomial values by various authors. They demonstrated that the product of consecutive polynomial values cannot be the perfect power for a suitable polynomial. In this article, we consider a related problem to the product of consecutive integers. We consider all sequences of polynomial values from a given interval whose products are almost perfect powers. We study the size of these powers and give an asymptotic result. We also define a group theoretic invariant, which is a natural generalization of the Davenport constant. We provide a non-trivial upper bound of this group theoretic invariant.
A linear equation $E$ is said to be sparse if there is $c\gt 0$ so that every subset of $[n]$ of size $n^{1-c}$ contains a solution of $E$ in distinct integers. The problem of characterising the sparse equations, first raised by Ruzsa in the 90s, is one of the most important open problems in additive combinatorics. We say that $E$ in $k$ variables is abundant if every subset of $[n]$ of size $\varepsilon n$ contains at least $\text{poly}(\varepsilon )\cdot n^{k-1}$ solutions of $E$. It is clear that every abundant $E$ is sparse, and Girão, Hurley, Illingworth, and Michel asked if the converse implication also holds. In this note, we show that this is the case for every $E$ in four variables. We further discuss a generalisation of this problem which applies to all linear equations.
For a subset $A$ of an abelian group $G$, given its size $|A|$, its doubling $\kappa =|A+A|/|A|$, and a parameter $s$ which is small compared to $|A|$, we study the size of the largest sumset $A+A'$ that can be guaranteed for a subset $A'$ of $A$ of size at most $s$. We show that a subset $A'\subseteq A$ of size at most $s$ can be found so that $|A+A'| = \Omega (\!\min\! (\kappa ^{1/3},s)|A|)$. Thus, a sumset significantly larger than the Cauchy–Davenport bound can be guaranteed by a bounded size subset assuming that the doubling $\kappa$ is large. Building up on the same ideas, we resolve a conjecture of Bollobás, Leader and Tiba that for subsets $A,B$ of $\mathbb{F}_p$ of size at most $\alpha p$ for an appropriate constant $\alpha \gt 0$, one only needs three elements $b_1,b_2,b_3\in B$ to guarantee $|A+\{b_1,b_2,b_3\}|\ge |A|+|B|-1$. Allowing the use of larger subsets $A'$, we show that for sets $A$ of bounded doubling, one only needs a subset $A'$ with $o(|A|)$ elements to guarantee that $A+A'=A+A$. We also address another conjecture and a question raised by Bollobás, Leader and Tiba on high-dimensional analogues and sets whose sumset cannot be saturated by a bounded size subset.
In our paper, we study multiplicative properties of difference sets $A-A$ for large sets $A \subseteq {\mathbb {Z}}/q{\mathbb {Z}}$ in the case of composite q. We obtain a quantitative version of a result of A. Fish about the structure of the product sets $(A-A)(A-A)$. Also, we show that the multiplicative covering number of any difference set is always small.
For a nonempty set A of integers and an integer n, let $r_{A}(n)$ be the number of representations of n in the form $n=a+a'$, where $a\leqslant a'$ and $a, a'\in A$, and $d_{A}(n)$ be the number of representations of n in the form $n=a-a'$, where $a, a'\in A$. The binary support of a positive integer n is defined as the subset S(n) of nonnegative integers consisting of the exponents in the binary expansion of n, i.e., $n=\sum_{i\in S(n)} 2^i$, $S(-n)=-S(n)$ and $S(0)=\emptyset$. For real number x, let $A(-x,x)$ be the number of elements $a\in A$ with $-x\leqslant a\leqslant x$. The famous Erdős-Turán Conjecture states that if A is a set of positive integers such that $r_A(n)\geqslant 1$ for all sufficiently large n, then $\limsup_{n\rightarrow\infty}r_A(n)=\infty$. In 2004, Nešetřil and Serra initially introduced the notation of “bounded” property and confirmed the Erdős-Turán conjecture for a class of bounded bases. They also proved that, there exists a set A of integers satisfying $r_A(n)=1$ for all integers n and $|S(x)\bigcup S(y)|\leqslant 4|S(x+y)|$ for $x,y\in A$. On the other hand, Nathanson proved that there exists a set A of integers such that $r_A(n)=1$ for all integers n and $2\log x/\log 5+c_1\leqslant A(-x,x)\leqslant 2\log x/\log 3+c_2$ for all $x\geqslant 1$, where $c_1,c_2$ are absolute constants. In this paper, following these results, we prove that, there exists a set A of integers such that: $r_A(n)=1$ for all integers n and $d_A(n)=1$ for all positive integers n, $|S(x)\bigcup S(y)|\leqslant 4|S(x+y)|$ for $x,y\in A$ and $A(-x,x) \gt (4/\log 5)\log\log x+c$ for all $x\geqslant 1$, where c is an absolute constant. Furthermore, we also construct a family of arbitrarily spare such sets A.
with initial data $(x_1,x_2,x_3)=(0,x,1)$, is eventually constant, and that its transit time and limit functions (of x) are unbounded and continuous, respectively. In this paper, we prove that for the slightly modified recursion
A finite set of integers A tiles the integers by translations if $\mathbb {Z}$ can be covered by pairwise disjoint translated copies of A. Restricting attention to one tiling period, we have $A\oplus B=\mathbb {Z}_M$ for some $M\in \mathbb {N}$ and $B\subset \mathbb {Z}$. This can also be stated in terms of cyclotomic divisibility of the mask polynomials $A(X)$ and $B(X)$ associated with A and B.
In this article, we introduce a new approach to a systematic study of such tilings. Our main new tools are the box product, multiscale cuboids and saturating sets, developed through a combination of harmonic-analytic and combinatorial methods. We provide new criteria for tiling and cyclotomic divisibility in terms of these concepts. As an application, we can determine whether a set A containing certain configurations can tile a cyclic group $\mathbb {Z}_M$, or recover a tiling set based on partial information about it. We also develop tiling reductions where a given tiling can be replaced by one or more tilings with a simpler structure. The tools introduced here are crucial in our proof in [24] that all tilings of period $(pqr)^2$, where $p,q,r$ are distinct odd primes, satisfy a tiling condition proposed by Coven and Meyerowitz [2].
In 1946, Erdős and Niven proved that no two partial sums of the harmonic series can be equal. We present a generalisation of the Erdős–Niven theorem by showing that no two partial sums of the series $\sum _{k=0}^\infty {1}/{(a+bk)}$ can be equal, where a and b are positive integers. The proof of our result uses analytic and p-adic methods.
We demonstrate that every difference set in a finite Abelian group is equivalent to a certain ‘regular’ covering of the lattice $ A_n = \{ \boldsymbol {x} \in \mathbb {Z} ^{n+1} : \sum _{i} x_i = 0 \} $ with balls of radius $ 2 $ under the $ \ell _1 $ metric (or, equivalently, a covering of the integer lattice $ \mathbb {Z} ^n $ with balls of radius $ 1 $ under a slightly different metric). For planar difference sets, the covering is also a packing, and therefore a tiling, of $ A_n $. This observation leads to a geometric reformulation of the prime power conjecture and of other statements involving Abelian difference sets.
We obtain a nontrivial upper bound for the multiplicative energy of any sufficiently large subset of a subvariety of a finite algebraic group. We also find some applications of our results to the growth of conjugates classes, estimates of exponential sums, and restriction phenomenon.
for a finite $A\subset \mathbb {R}$, following a streamlining of the arguments of Solymosi, Konyagin and Shkredov. We include several new observations to our techniques.
We offer an alternative proof of a result of Conlon, Fox, Sudakov and Zhao [CFSZ20] on solving translation-invariant linear equations in dense Sidon sets. Our proof generalises to equations in more than five variables and yields effective bounds.
Fix positive integers k and n with $k \leq n$. Numbers $x_0, x_1, x_2, \ldots , x_{n - 1}$, each equal to $\pm {1}$, are cyclically arranged (so that $x_0$ follows $x_{n - 1}$) in that order. The problem is to find the product $P = x_0x_1 \cdots x_{n - 1}$ of all n numbers by asking the smallest number of questions of the type $Q_i$: what is $x_ix_{i + 1}x_{i + 2} \cdots x_{i+ k -1}$? (where all the subscripts are read modulo n). This paper studies the problem and some of its generalisations.
Let k and l be positive integers satisfying $k \ge 2, l \ge 1$. A set $\mathcal {A}$ of positive integers is an asymptotic basis of order k if every large enough positive integer can be represented as the sum of k terms from $\mathcal {A}$. About 35 years ago, P. Erdős asked: does there exist an asymptotic basis of order k where all the subset sums with at most l terms are pairwise distinct with the exception of a finite number of cases as long as $l \le k - 1$? We use probabilistic tools to prove the existence of an asymptotic basis of order $2k+1$ for which all the sums of at most k elements are pairwise distinct except for ‘small’ numbers.
We prove that if $A \subseteq [X,\,2X]$ and $B \subseteq [Y,\,2Y]$ are sets of integers such that gcd (a, b) ⩾ D for at least δ|A||B| pairs (a, b) ε A × B then $|A||B|{ \ll _{\rm{\varepsilon }}}{\delta ^{ - 2 - \varepsilon }}XY/{D^2}$. This is a new result even when δ = 1. The proof uses ideas of Koukoulopoulos and Maynard and some additional combinatorial arguments.