We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We continue our study of exponent semigroups of rational matrices. Our main result is that the matricial dimension of a numerical semigroup is at most its multiplicity (the least generator), greatly improving upon the previous upper bound (the conductor). For many numerical semigroups, including all symmetric numerical semigroups, our upper bound is tight. Our construction uses combinatorially structured matrices and is parametrised by Kunz coordinates, which are central to enumerative problems in the study of numerical semigroups.
Let $S=K[x_1,\ldots ,x_n]$ be the polynomial ring over a field K, and let A be a finitely generated standard graded S-algebra. We show that if the defining ideal of A has a quadratic initial ideal, then all the graded components of A are componentwise linear. Applying this result to the Rees ring $\mathcal {R}(I)$ of a graded ideal I gives a criterion on I to have componentwise linear powers. Moreover, for any given graph G, a construction on G is presented which produces graphs whose cover ideals $I_G$ have componentwise linear powers. This, in particular, implies that for any Cohen–Macaulay Cameron–Walker graph G all powers of $I_G$ have linear resolutions. Moreover, forming a cone on special graphs like unmixed chordal graphs, path graphs, and Cohen–Macaulay bipartite graphs produces cover ideals with componentwise linear powers.
We study multivariate polynomials over ‘structured’ grids. Firstly, we propose an interpretation as to what it means for a finite subset of a field to be structured; we do so by means of a numerical parameter, the nullity. We then extend several results – notably, the Combinatorial Nullstellensatz and the Coefficient Theorem – to polynomials over structured grids. The main point is that the structure of a grid allows the degree constraints on polynomials to be relaxed.
For a simple bipartite graph G, we give an upper bound for the regularity of powers of the edge ideal
$I(G)$
in terms of its vertex domination number. Consequently, we explicitly compute the regularity of powers of the edge ideal of a bipartite Kneser graph. Further, we compute the induced matching number of a bipartite Kneser graph.
Fix a poset Q on
$\{x_1,\ldots ,x_n\}$
. A Q-Borel monomial ideal
$I \subseteq \mathbb {K}[x_1,\ldots ,x_n]$
is a monomial ideal whose monomials are closed under the Borel-like moves induced by Q. A monomial ideal I is a principal Q-Borel ideal, denoted
$I=Q(m)$
, if there is a monomial m such that all the minimal generators of I can be obtained via Q-Borel moves from m. In this paper we study powers of principal Q-Borel ideals. Among our results, we show that all powers of
$Q(m)$
agree with their symbolic powers, and that the ideal
$Q(m)$
satisfies the persistence property for associated primes. We also compute the analytic spread of
$Q(m)$
in terms of the poset Q.
For numerical semigroups with a specified list of (not necessarily minimal) generators, we describe the asymptotic distribution of factorization lengths with respect to an arbitrary modulus. In particular, we prove that the factorization lengths are equidistributed across all congruence classes that are not trivially ruled out by modular considerations.
Let I be a zero-dimensional ideal in the polynomial ring
$K[x_1,\ldots ,x_n]$
over a field K. We give a bound for the number of roots of I in
$K^n$
counted with combinatorial multiplicity. As a consequence, we give a proof of Alon’s combinatorial Nullstellensatz.
Assume that G is a graph with edge ideal
$I(G)$
and star packing number
$\alpha _2(G)$
. We denote the sth symbolic power of
$I(G)$
by
$I(G)^{(s)}$
. It is shown that the inequality
$ \operatorname {\mathrm {depth}} S/(I(G)^{(s)})\geq \alpha _2(G)-s+1$
is true for every chordal graph G and every integer
$s\geq 1$
. Moreover, it is proved that for any graph G, we have
$ \operatorname {\mathrm {depth}} S/(I(G)^{(2)})\geq \alpha _2(G)-1$
.
Let $X$ be a nonempty set and ${\mathcal{P}}(X)$ the power set of $X$. The aim of this paper is to identify the unital subrings of ${\mathcal{P}}(X)$ and to compute its cardinality when it is finite. It is proved that any topology $\unicode[STIX]{x1D70F}$ on $X$ such that $\unicode[STIX]{x1D70F}=\unicode[STIX]{x1D70F}^{c}$, where $\unicode[STIX]{x1D70F}^{c}=\{U^{c}\mid U\in \unicode[STIX]{x1D70F}\}$, is a unital subring of ${\mathcal{P}}(X)$. It is also shown that $X$ is finite if and only if any unital subring of ${\mathcal{P}}(X)$ is a topology $\unicode[STIX]{x1D70F}$ on $X$ such that $\unicode[STIX]{x1D70F}=\unicode[STIX]{x1D70F}^{c}$ if and only if the set of unital subrings of ${\mathcal{P}}(X)$ is finite. As a consequence, if $X$ is finite with cardinality $n\geq 2$, then the number of unital subrings of ${\mathcal{P}}(X)$ is equal to the $n$th Bell number and the supremum of the lengths of chains of unital subalgebras of ${\mathcal{P}}(X)$ is equal to $n-1$.
We investigate whether the property of having linear quotients is inherited by ideals generated by multigraded shifts of a Borel ideal and a squarefree Borel ideal. We show that the ideal generated by the first multigraded shifts of a Borel ideal has linear quotients, as do the ideal generated by the $k$th multigraded shifts of a principal Borel ideal and an equigenerated squarefree Borel ideal for each $k$. Furthermore, we show that equigenerated squarefree Borel ideals share the property of being squarefree Borel with the ideals generated by multigraded shifts.
A square-free monomial ideal $I$ of $k[x_{1},\ldots ,x_{n}]$ is said to be an $f$-ideal if the facet complex and non-face complex associated with $I$ have the same $f$-vector. We show that $I$ is an $f$-ideal if and only if its Newton complementary dual $\widehat{I}$ is also an $f$-ideal. Because of this duality, previous results about some classes of $f$-ideals can be extended to a much larger class of $f$-ideals. An interesting by-product of our work is an alternative formulation of the Kruskal–Katona theorem for $f$-vectors of simplicial complexes.
We propose here a generalization of the problem addressed by the SHGH conjecture. The SHGH conjecture posits a solution to the question of how many conditions a general union $X$ of fat points imposes on the complete linear system of curves in $\mathbb{P}^{2}$ of fixed degree $d$, in terms of the occurrence of certain rational curves in the base locus of the linear subsystem defined by $X$. As a first step towards a new theory, we show that rational curves play a similar role in a special case of a generalized problem, which asks how many conditions are imposed by a general union of fat points on linear subsystems defined by imposed base points. Moreover, motivated by work of Di Gennaro, Ilardi and Vallès and of Faenzi and Vallès, we relate our results to the failure of a strong Lefschetz property, and we give a Lefschetz-like criterion for Terao’s conjecture on the freeness of line arrangements.
For a skew-symmetrizable cluster algebra ${\mathcal{A}}_{t_{0}}$ with principal coefficients at $t_{0}$, we prove that each seed $\unicode[STIX]{x1D6F4}_{t}$ of ${\mathcal{A}}_{t_{0}}$ is uniquely determined by its $C$-matrix, which was proposed by Fomin and Zelevinsky (Compos. Math. 143 (2007), 112–164) as a conjecture. Our proof is based on the fact that the positivity of cluster variables and sign coherence of $c$-vectors hold for ${\mathcal{A}}_{t_{0}}$, which was actually verified in Gross et al. (Canonical bases for cluster algebras, J. Amer. Math. Soc. 31(2) (2018), 497–608). Further discussion is provided in the sign-skew-symmetric case so as to obtain a weak version of the conjecture in this general case.
Let $\mathbb{K}$ be a field and S = ${\mathbb{K}}$[x1, . . ., xn] be the polynomial ring in n variables over the field $\mathbb{K}$. For every monomial ideal I ⊂ S, we provide a recursive formula to determine a lower bound for the Stanley depth of S/I. We use this formula to prove the inequality sdepth(S/I) ≥ size(I) for a particular class of monomial ideals.
To a pair $P$ and $Q$ of finite posets we attach the toric ring $K[P,Q]$ whose generators are in bijection to the isotone maps from $P$ to $Q$. This class of algebras, called isotonian, are natural generalizations of the so-called Hibi rings. We determine the Krull dimension of these algebras and for particular classes of posets $P$ and $Q$ we show that $K[P,Q]$ is normal and that their defining ideal admits a quadratic Gröbner basis.
We study the total graph of a finite commutative ring. We calculate its metric dimension in the case when the Jacobson radical of the ring is nontrivial, and we examine the metric dimension of the total graph of a product of at most two fields, obtaining either exact values in some cases or bounds in other, depending on the number of elements in the respective fields.
Building on coprincipal mesoprimary decomposition [Kahle and Miller, Decompositions of commutative monoid congruences and binomial ideals, Algebra and Number Theory 8 (2014), 1297–1364], we combinatorially construct an irreducible decomposition of any given binomial ideal. In a parallel manner, for congruences in commutative monoids we construct decompositions that are direct combinatorial analogues of binomial irreducible decompositions, and for binomial ideals we construct decompositions into ideals that are as irreducible as possible while remaining binomial. We provide an example of a binomial ideal that is not an intersection of irreducible binomial ideals, thus answering a question of Eisenbud and Sturmfels [Binomial ideals, Duke Math. J. 84 (1996), 1–45].