Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T12:55:21.506Z Has data issue: false hasContentIssue false

Line arrangements and configurations of points with an unexpected geometric property

Published online by Cambridge University Press:  10 September 2018

D. Cook II
Affiliation:
Google LLC, 111 8th Avenue, New York, NY 10011, USA email dcook.math@gmail.com
B. Harbourne
Affiliation:
Department of Mathematics, University of Nebraska, Lincoln, NE 68588-0130, USA email bharbourne1@unl.edu
J. Migliore
Affiliation:
Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, USA email migliore.1@nd.edu
U. Nagel
Affiliation:
Department of Mathematics, University of Kentucky, 715 Patterson Office Tower, Lexington, KY 40506-0027, USA email uwe.nagel@uky.edu

Abstract

We propose here a generalization of the problem addressed by the SHGH conjecture. The SHGH conjecture posits a solution to the question of how many conditions a general union $X$ of fat points imposes on the complete linear system of curves in $\mathbb{P}^{2}$ of fixed degree $d$, in terms of the occurrence of certain rational curves in the base locus of the linear subsystem defined by $X$. As a first step towards a new theory, we show that rational curves play a similar role in a special case of a generalized problem, which asks how many conditions are imposed by a general union of fat points on linear subsystems defined by imposed base points. Moreover, motivated by work of Di Gennaro, Ilardi and Vallès and of Faenzi and Vallès, we relate our results to the failure of a strong Lefschetz property, and we give a Lefschetz-like criterion for Terao’s conjecture on the freeness of line arrangements.

Type
Research Article
Copyright
© The Authors 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, T. and Dimca, A., On the splitting types of bundles of logarithmic vector fields along plane curves , Internat. J. Math. 29(8) (2018), 1850055.Google Scholar
Akesseh, S., Ideal containments under flat extensions and interpolation on linear systems in $\mathbb{P}^{2}$ , PhD thesis, University of Nebraska-Lincoln (2017).Google Scholar
Bauer, Th., Di Rocco, S., Harbourne, B., Huizenga, J., Seceleanu, A. and Szemberg, T., Negative curves on symmetric blowups of the projective plane, resurgences and Waldschmidt constants , Int. Math. Res. Not. IMRN (2018), doi:10.1093/imrn/rnx329.Google Scholar
Bigatti, A., Geramita, A. V. and Migliore, J., Geometric consequences of extremal behavior in a theorem of Macaulay , Trans. Amer. Math. Soc. 346 (1994), 203235.Google Scholar
Campanella, G., Standard bases of perfect homogeneous polynomial ideals of height 2 , J. Algebra 101 (1986), 4760.Google Scholar
Ciliberto, C. and Miranda, R., The Segre and Harbourne–Hirschowitz conjectures , in Applications of algebraic geometry to coding theory, physics and computation (Eilat, 2001), NATO Sci. Ser. II Math. Phys. Chem., vol. 36 (Kluwer Academic, Dordrecht, 2001), 3751.Google Scholar
CoCoA: a system for doing computations in commutative algebra. Available at http://cocoa.dima.unige.it.Google Scholar
Davis, E. D., 0-dimensional subschemes of ℙ2 : new application of Castelnuovo’s function , Ann. Univ. Ferrara Sez. VII (N.S.) 32 (1986), 93107.Google Scholar
Davis, E. D., Geramita, A. V. and Maroscia, P., Perfect homogeneous ideals: Dubreil’s theorems revisited , Bull. Sci. Math. (2) 108 (1984), 143185.Google Scholar
Di Gennaro, R. and Ilardi, G., Laplace equations, Lefschetz properties and line arrangements , J. Pure Appl. Algebra 222 (2018), 26572666.Google Scholar
Di Gennaro, R., Ilardi, G. and Vallès, J., Singular hypersurfaces characterizing the Lefschetz properties , J. Lond. Math. Soc. (2) 89 (2014), 194212.Google Scholar
Di Marca, M., Malara, G. and Oneto, A., Unexpected curves arising from special line arrangements, Preprint (2018), arXiv:1804.02730.Google Scholar
Dimca, A. and Sticlaru, G., Koszul complexes and pole order filtrations , Proc. Edinb. Math. Soc. 58 (2015), 333354.Google Scholar
Dolgachev, I. and Kapranov, M., Arrangements of hyperplanes and vector bundles on P n , Duke Math. J. 71 (1993), 633664.Google Scholar
Emsalem, J. and Iarrobino, A., Inverse system of a symbolic power I , J. Algebra 174 (1995), 10801090.Google Scholar
Faenzi, D. and Vallès, J., Logarithmic bundles and line arrangements, an approach via the standard construction , J. Lond. Math. Soc. (2) 90 (2014), 675694.Google Scholar
Farnik, Ł., Galuppi, F., Sodomaco, L. and Trok, W., On the unique unexpected quartic in $\mathbb{P}^{2}$ , Preprint (2018), arXiv:1804.03590.Google Scholar
Geramita, A. V., Harbourne, B. and Migliore, J., Star configurations in ℙ n , J. Algebra 376 (2013), 279299.Google Scholar
Gimigliano, A., On linear systems of plane curves, PhD thesis, Queen’s University, Kingston, Ontario (1987).Google Scholar
Grauert, H. and Mülich, G., Vektorbündel vom Rang 2 über dem n-dimensionalen komplex-projektiven Raum , Manuscripta Math. 16 (1975), 75100.Google Scholar
Grayson, D. R. and Stillman, M. E., Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.Google Scholar
Harbourne, B., The geometry of rational surfaces and Hilbert functions of points in the plane , in Proceedings of the 1984 Vancouver conference in algebraic geometry, CMS Conf. Proc. vol. 6 (American Mathematical Society, Providence, RI, 1986), 95111.Google Scholar
Harbourne, B., Anticanonical rational surfaces , Trans. Amer. Math. Soc. 349 (1997), 11911208.Google Scholar
Harbourne, B., Asymptotics of linear systems with connections to line arrangements , in Proceedings for 2016 miniPAGES Conference, Banach Center Publications, vol. 116, (2018).Google Scholar
Hartshorne, R., Algebraic geometry (Springer, New York, 1977).Google Scholar
Hartshorne, R., Stable reflexive sheaves , Math. Ann. 254 (1980), 121176.Google Scholar
Hirschowitz, A., Une conjecture pour la cohomologie des diviseurs sur les surfaces rationelles génériques , J. Reine Angew. Math. 397 (1989), 208213.Google Scholar
Hirzebruch, F., Arrangements of lines and algebraic surfaces , in Arithmetic and geometry, vol. II, Progress in Mathematics, vol. 36 (Birkhäuser, Boston, 1983), 113140.Google Scholar
Ilardi, G., Jacobian ideals, arrangements and the Lefschetz properties , J. Algebra 508 (2018), 418420.Google Scholar
Okonek, C., Schneider, M. and Spindler, H., Vector bundles on complex projective spaces, Progress in Mathematics, vol. 3 (Birkhäuser, Boston, 1980).Google Scholar
Orlik, P. and Terao, H., Arrangement of hyperplanes, Grundlehren der Mathematischen Wissenschaften, vol. 300 (Springer, Berlin, 1992).Google Scholar
Schenck, H., Elementary modifications and line configurations in ℙ2 , Comment. Math. Helv. 78 (2003), 447462.Google Scholar
Segre, B., Alcune questioni su insiemi finiti di punti in geometria algebrica, Atti del Convegno Internazionale di Geometria Algebrica (Torino, 1961), (Rattero, Turin, 1962), 1533.Google Scholar
Suciu, A., Fundamental groups, Alexander invariants, and cohomology jumping loci , in Topology of algebraic varieties and singularities, Contemporary Mathematics, vol. 538, eds Cogolludo-Augustín, J. I. and Hironaka, E. (2011), 179223.Google Scholar
Terao, H., Arrangements of hyperplanes and their freeness, I , I. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 293312.Google Scholar
Urzúa, G. A., Arrangements of curves and algebraic surfaces, PhD thesis, University of Michigan (2008).Google Scholar
Yoshinaga, M., Freeness of hyperplane arrangements and related topics , Ann. Fac. Sci. Toulouse Math. (6) 23 (2014), 483512.Google Scholar