Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T01:17:46.134Z Has data issue: false hasContentIssue false

Could Bayesian cognitive science undermine dual-process theories of reasoning?

Published online by Cambridge University Press:  18 July 2023

Mike Oaksford*
Affiliation:
Department of Psychological Sciences, Birkbeck College, University of London, London, UK mike.oaksford@bbk.ac.uk https://www.bbk.ac.uk/our-staff/profile/8009448/mike-oaksford

Abstract

Computational-level models proposed in recent Bayesian cognitive science predict both the “biased” and correct responses on many tasks. So, rather than possessing two reasoning systems, people can generate both possible responses within a single system. Consequently, although an account of why people make one response rather than another is required, dual processes of reasoning may not be.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bago, B., Raoelison, M., & De Neys, W. (2019). Second-guess: Testing the specificity of error detection in the bat-and-ball problem. Acta Psychologica, 193, 214228. https://doi.org/10.1016/j.actpsy.2019.01.008CrossRefGoogle ScholarPubMed
Chater, N., & Oaksford, M. (Eds.) (2008). The probabilistic mind: Prospects for Bayesian cognitive science. Oxford University Press.10.1093/acprof:oso/9780199216093.001.0001CrossRefGoogle Scholar
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral & Brain Sciences, 36, 181253.10.1017/S0140525X12000477CrossRefGoogle ScholarPubMed
Coenen, A., Nelson, J. D., & Gureckis, T. M. (2019). Asking the right questions about the psychology of human inquiry: Nine open challenges. Psychonomic Bulletin & Review, 26, 15481587. https://doi-org.ezproxy.lib.bbk.ac.uk/10.3758/s13423-018-1470-5CrossRefGoogle ScholarPubMed
Dasgupta, I., Schulz, E., & Gershman, S. J. (2017). Where do hypotheses come from? Cognitive Psychology, 96, 125.10.1016/j.cogpsych.2017.05.001CrossRefGoogle ScholarPubMed
Elqayam, S., & Over, D. E. (2013). New paradigm psychology of reasoning: An introduction to the special issue edited by Elqayam, Bonnefon, and over. Thinking & Reasoning, 19, 249265. https://doi-org.ezproxy.lib.bbk.ac.uk/10.1080/13546783.2013.841591CrossRefGoogle Scholar
Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11, 127138. https://doi.org/10.1038/nrn2787CrossRefGoogle ScholarPubMed
Hahn, U., & Oaksford, M. (2007). The rationality of informal argumentation: A Bayesian approach to reasoning fallacies. Psychological Review, 114, 704732.CrossRefGoogle ScholarPubMed
Kruglanski, A. W., & Gigerenzer, G. (2011). Intuitive and deliberate judgments are based on common principles. Psychological Review, 118, 97109. doi-org.ezproxy.lib.bbk.ac.uk/10.1037/a0020762CrossRefGoogle ScholarPubMed
Monteiro, T., Vasconcelos, M., & Kacelnik, A. (2013). Starlings uphold principles of economic rationality for delay and probability of reward. Proceedings of the Royal Society B, 280, 20122386. doi:10.1098/rspb.2012.2386CrossRefGoogle ScholarPubMed
Oaksford, M. (2022). Mental models, computational explanation, and Bayesian cognitive science: Commentary on Knauff and Gazzo Castañeda (2022). Thinking & Reasoning. doi.org/10.1080/13546783.2021.2022531Google Scholar
Oaksford, M., & Chater, N. (1994). A rational analysis of the selection task as optimal data selection. Psychological Review, 101, 608631.CrossRefGoogle Scholar
Oaksford, M., & Chater, N. (2007). Bayesian rationality: The probabilistic approach to human reasoning. Oxford University Press.10.1093/acprof:oso/9780198524496.001.0001CrossRefGoogle Scholar
Oaksford, M., & Chater, N. (2012). Dual processes, probabilities, and cognitive architecture. Mind & Society, 11, 1526.10.1007/s11299-011-0096-3CrossRefGoogle Scholar
Oaksford, M., & Chater, N. (2020). New paradigms in the psychology of reasoning. Annual Review of Psychology, 71, 305330.10.1146/annurev-psych-010419-051132CrossRefGoogle ScholarPubMed
Oaksford, M., & Hall, S. (2016). On the source of human irrationality. Trends in Cognitive Science, 20, 336344.10.1016/j.tics.2016.03.002CrossRefGoogle ScholarPubMed
Rehder, B. (2017). Concepts as causal models: Categorization. In Waldmann, M. R. (Ed.), The Oxford handbook of causal reasoning (pp. 347375). Oxford University Press.Google Scholar
Stanovich, K. E. (2013). Why humans are (sometimes) less rational than other animals: Cognitive complexity and the axioms of rational choice. Thinking & Reasoning, 19, 126.10.1080/13546783.2012.713178CrossRefGoogle Scholar
Tentori, K., Crupi, V., & Russo, S. (2013). On the determinants of the conjunction fallacy: Probability versus inductive confirmation. Journal of Experimental Psychology: General, 142, 235255.CrossRefGoogle ScholarPubMed
Vance, J., & Oaksford, M. (2021). Explaining the implicit negations effect in conditional inference: Experience, probabilities, and contrast sets. Journal of Experimental Psychology: General, 150, 354384. https://doi.org/10.1037/xge0000954CrossRefGoogle ScholarPubMed
Zhu, J.-Q., Sanborn, A. N., & Chater, N. (2020). The Bayesian sampler: Generic Bayesian inference causes incoherence in human probability judgments. Psychological Review, 127, 719748. https://doi.org/10.1037/rev0000190CrossRefGoogle ScholarPubMed