Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T20:43:11.579Z Has data issue: false hasContentIssue false

Learning how to reason and deciding when to decide

Published online by Cambridge University Press:  18 July 2023

Senne Braem
Affiliation:
Department of Experimental Psychology, Universiteit Gent, Gent, Belgium senne.braem@ugent.be; https://users.ugent.be/~sbraem/ leslie.held@ugent.be
Leslie Held
Affiliation:
Department of Experimental Psychology, Universiteit Gent, Gent, Belgium senne.braem@ugent.be; https://users.ugent.be/~sbraem/ leslie.held@ugent.be
Amitai Shenhav
Affiliation:
Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI, USA amitai_shenhav@brown.edu; https://www.shenhavlab.org
Romy Frömer
Affiliation:
Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI, USA amitai_shenhav@brown.edu; https://www.shenhavlab.org Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK r.froemer@bham.ac.uk

Abstract

Research on human reasoning has both popularized and struggled with the idea that intuitive and deliberate thoughts stem from two different systems, raising the question how people switch between them. Inspired by research on cognitive control and conflict monitoring, we argue that detecting the need for further thought relies on an intuitive, context-sensitive process that is learned in itself.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahamse, E., Braem, S., Notebaert, W., & Verguts, T. (2016). Grounding cognitive control in associative learning. Psychological Bulletin, 142, 693728.10.1037/bul0000047CrossRefGoogle ScholarPubMed
Berlyne, D. (1960). Conflict, arousal, and curiosity. McGraw-Hill.10.1037/11164-000CrossRefGoogle Scholar
Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J. D. (2006). The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced-choice tasks. Psychological Review, 113(4), 700.10.1037/0033-295X.113.4.700CrossRefGoogle ScholarPubMed
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624.10.1037/0033-295X.108.3.624CrossRefGoogle ScholarPubMed
Braem, S. (2017). Conditioning task switching behavior. Cognition, 166, 272276.10.1016/j.cognition.2017.05.037CrossRefGoogle ScholarPubMed
Braem, S., & Egner, T. (2018). Getting a grip on cognitive flexibility. Current Directions in Psychological Science, 27(6), 470476.10.1177/0963721418787475CrossRefGoogle ScholarPubMed
Bustamante, L., Lieder, F., Musslick, S., Shenhav, A., & Cohen, J. (2021). Learning to overexert cognitive control in a Stroop task. Cognitive, Affective, & Behavioral Neuroscience, 21(3), 453471.10.3758/s13415-020-00845-xCrossRefGoogle Scholar
Callaway, F., Rangel, A., & Griffiths, T. L. (2021). Fixation patterns in simple choice reflect optimal information sampling. PLoS Computational Biology, 17(3), e1008863.10.1371/journal.pcbi.1008863CrossRefGoogle ScholarPubMed
Cavanagh, J. F., Wiecki, T. V., Cohen, M. X., Figueroa, C. M., Samanta, J., Sherman, S. J., & Frank, M. J. (2011). Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold. Nature Neuroscience, 14(11), 14621467.10.1038/nn.2925CrossRefGoogle ScholarPubMed
Dasgupta, I., & Gershman, S. J. (2021). Memory as a computational resource. Trends in Cognitive Sciences, 25(3), 240251.10.1016/j.tics.2020.12.008CrossRefGoogle ScholarPubMed
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135.10.1146/annurev-psych-113011-143750CrossRefGoogle ScholarPubMed
Doebel, S. (2020). Rethinking executive function and its development. Perspectives on Psychological Science, 15(4), 942956.10.1177/1745691620904771CrossRefGoogle ScholarPubMed
Frömer, R., & Shenhav, A. (2022). Filling the gaps: Cognitive control as a critical lens for understanding mechanisms of value-based decision-making. Neuroscience & Biobehavioral Reviews, 134, 104483.10.1016/j.neubiorev.2021.12.006CrossRefGoogle ScholarPubMed
Gershman, S. (2021). What makes us smart: The computational logic of human cognition. Princeton University Press.Google Scholar
Grahek, I., Frömer, R., Prater Fahey, M., & Shenhav, A. (2023). Learning when effort matters: Neural dynamics underlying updating and adaptation to changes in performance efficacy. Cerebral Cortex, 33(5), 23952411.10.1093/cercor/bhac215CrossRefGoogle ScholarPubMed
Griffiths, T. L., Callaway, F., Chang, M. B., Grant, E., Krueger, P. M., & Lieder, F. (2019). Doing more with less: Meta-reasoning and meta-learning in humans and machines. Current Opinion in Behavioral Sciences, 29, 2430.10.1016/j.cobeha.2019.01.005CrossRefGoogle Scholar
Hunt, L. T., Daw, N. D., Kaanders, P., MacIver, M. A., Mugan, U., Procyk, E., … Kolling, N. (2021). Formalizing planning and information search in naturalistic decision-making. Nature Neuroscience, 24(8), 10511064.10.1038/s41593-021-00866-wCrossRefGoogle ScholarPubMed
Hutcherson, C. A., Bushong, B., & Rangel, A. (2015). A neurocomputational model of altruistic choice and its implications. Neuron, 87(2), 451462.10.1016/j.neuron.2015.06.031CrossRefGoogle ScholarPubMed
Jang, A. I., Sharma, R., & Drugowitsch, J. (2021). Optimal policy for attention-modulated decisions explains human fixation behavior. eLife, 10, e63436.10.7554/eLife.63436CrossRefGoogle ScholarPubMed
Lieder, F., Shenhav, A., Musslick, S., & Griffiths, T. L. (2018). Rational metareasoning and the plasticity of cognitive control. PLoS Computational Biology, 14(4), e1006043.10.1371/journal.pcbi.1006043CrossRefGoogle ScholarPubMed
Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95(4), 492.10.1037/0033-295X.95.4.492CrossRefGoogle Scholar
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167202.10.1146/annurev.neuro.24.1.167CrossRefGoogle ScholarPubMed
Otto, A. R., Braem, S., Silvetti, M., & Vassena, E. (2022). Is the juice worth the squeeze? Learning the marginal value of mental effort over time. Journal of Experimental Psychology: General, 151(10), 23242341.10.1037/xge0001208CrossRefGoogle ScholarPubMed
Ratcliff, R., & Frank, M. J. (2012). Reinforcement-based decision making in corticostriatal circuits: Mutual constraints by neurocomputational and diffusion models. Neural Computation, 24(5), 11861229.10.1162/NECO_a_00270CrossRefGoogle ScholarPubMed
Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision model: Current issues and history. Trends in Cognitive Sciences, 20(4), 260281.10.1016/j.tics.2016.01.007CrossRefGoogle ScholarPubMed
Shadlen, M. N., & Shohamy, D. (2016). Decision making and sequential sampling from memory. Neuron, 90(5), 927939.10.1016/j.neuron.2016.04.036CrossRefGoogle ScholarPubMed
Shenhav, A. (2017). The perils of losing control: Why self-control is not just another value-based decision. Psychological Inquiry, 28(2–3), 148152.10.1080/1047840X.2017.1337407CrossRefGoogle Scholar
Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron, 79(2), 217240.10.1016/j.neuron.2013.07.007CrossRefGoogle ScholarPubMed
Smith, S. M., & Krajbich, I. (2019). Gaze amplifies value in decision making. Psychological Science, 30(1), 116128.10.1177/0956797618810521CrossRefGoogle ScholarPubMed
Son, J. Y., Bhandari, A., & FeldmanHall, O. (2019). Crowdsourcing punishment: Individuals reference group preferences to inform their own punitive decisions. Scientific Reports, 9(1), 115.10.1038/s41598-019-48050-2CrossRefGoogle ScholarPubMed
Ulrich, R., Schröter, H., Leuthold, H., & Birngruber, T. (2015). Automatic and controlled stimulus processing in conflict tasks: Superimposed diffusion processes and delta functions. Cognitive Psychology, 78, 148174.10.1016/j.cogpsych.2015.02.005CrossRefGoogle ScholarPubMed
Wang, J. X. (2021). Meta-learning in natural and artificial intelligence. Current Opinion in Behavioral Sciences, 38, 9095.10.1016/j.cobeha.2021.01.002CrossRefGoogle Scholar
Yang, Q., Xing, J., Braem, S., & Pourtois, G. (2022). The selective use of punishments on congruent versus incongruent trials in the Stroop task. Neurobiology of Learning and Memory, 193, 107654.10.1016/j.nlm.2022.107654CrossRefGoogle ScholarPubMed