Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T20:48:55.934Z Has data issue: false hasContentIssue false

“Switching” between fast and slow processes is just reward-based branching

Published online by Cambridge University Press:  18 July 2023

George Ainslie*
Affiliation:
Department of Veterans Affairs, Coatesville, PA, USA ga@picoeconomics.org www.picoeconomics.org

Abstract

Shortcuts to goals are rewarded by faster attainment and punished by more frequent failure, so selection of the various kinds – heuristics, cached sequences (habits or macros), gut instincts – depends on reward history just like other kinds of choice. The speeds of shortcuts lie on continua along with speeds of deliberation, and these continua have no obvious separation points.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainslie, G. (2009). Pleasure and aversion: Challenging the conventional dichotomy. Inquiry: A Journal of Medical Care Organization, Provision and Financing, 52(4), 357377. http://dx.doi.org/10.1080/00201740903087342CrossRefGoogle Scholar
Ainslie, G. (2017). De gustibus disputare: Hyperbolic delay discounting integrates five approaches to choice. Journal of Economic Methodology 24(2), 166189. http://dx.doi.org/10.1080/1350178X.2017.1309748CrossRefGoogle Scholar
Ainslie, G. (2021). Reply to commentaries to “willpower with and without effort.” Behavioral and Brain Sciences 44, E57. https://doi.org/10.1017/s0140525x21000029Google Scholar
Aquino, T. G., Minxha, J., Dunne, S., Ross, I. B., Mamelak, A. N., Rutishauser, U., & O'Doherty, J. P. (2020). Value-related neuronal responses in the human amygdala during observational learning. Journal of Neuroscience, 40(24), 47614772.10.1523/JNEUROSCI.2897-19.2020CrossRefGoogle ScholarPubMed
Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage, 76, 412427.10.1016/j.neuroimage.2013.02.063CrossRefGoogle ScholarPubMed
Berridge, K. C., & Robinson, T. (1998). What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience. Brain Research Reviews, 28, 309369.10.1016/S0165-0173(98)00019-8CrossRefGoogle ScholarPubMed
De Neys, W. (2021). On dual- and single-process models of thinking. Perspectives on Psychological Science, 16(6), 14121427.10.1177/1745691620964172CrossRefGoogle ScholarPubMed
Dohmatob, E., Dumas, G., & Bzdok, D. (2020). Dark control: The default mode network as a reinforcement learning agent. Human Brain Mapping, 41(12), 33183341.10.1002/hbm.25019CrossRefGoogle ScholarPubMed
Dolan, R. J., & Dayan, P. (2013). Goals and habits in the brain. Neuron, 80(2), 312325.10.1016/j.neuron.2013.09.007CrossRefGoogle ScholarPubMed
Gauthier, J. L., & Tank, D. W. (2018). A dedicated population for reward coding in the hippocampus. Neuron, 99(1), 179193.10.1016/j.neuron.2018.06.008CrossRefGoogle ScholarPubMed
Kable, J. W., & Glimcher, P. W. (2007) The neural correlates of subjective value during intertemporal choice. Nature Neuroscience 10, 16251633.10.1038/nn2007CrossRefGoogle ScholarPubMed
Keramati, M., Smittenaar, P., Dolan, R. J., & Dayan, P. (2016). Adaptive integration of habits into depth-limited planning defines a habitual-goal-directed spectrum. Proceedings of the National Academy of Sciences, 113(45), 1286812873.10.1073/pnas.1609094113CrossRefGoogle ScholarPubMed
Kim, H., Nanavaty, N., Ahmed, H., Mathur, V. A., & Anderson, B. A. (2021). Motivational salience guides attention to valuable and threatening stimuli: Evidence from behavior and functional magnetic resonance imaging. Journal of Cognitive Neuroscience, 33(12), 24402460.10.1162/jocn_a_01769CrossRefGoogle ScholarPubMed
Krönke, K. M., Wolff, M., Shi, Y., Kräplin, A., Smolka, M. N., Bühringer, G., & Goschke, T. (2020). Functional connectivity in a triple-network saliency model is associated with real-life self-control. Neuropsychologia, 149, 107667.10.1016/j.neuropsychologia.2020.107667CrossRefGoogle Scholar
Lempert, K. M., Steinglass, J. E., Pinto, A., Kable, J. W., & Simpson, H. B. (2019). Can delay discounting deliver on the promise of RDoC?. Psychological Medicine, 49(2), 190199.10.1017/S0033291718001770CrossRefGoogle ScholarPubMed
Levy, D. J., & Glimcher, P. W. (2012). The root of all value: A neural common currency for choice. Current Opinion in Neurobiology, 22(6), 10271038.10.1016/j.conb.2012.06.001CrossRefGoogle ScholarPubMed
McClure, S. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2004). The grasshopper and the ant: Separate neural systems value immediate and delayed monetary rewards. Science (New York, N.Y.) 306, 503507.10.1126/science.1100907CrossRefGoogle Scholar
Sambrook, T. D., Hardwick, B., Wills, A. J., & Goslin, J. (2018). Model-free and model-based reward prediction errors in EEG. NeuroImage, 178, 162171.10.1016/j.neuroimage.2018.05.023CrossRefGoogle ScholarPubMed
van den Bos, W., & McClure, S. M. (2013). Towards a general model of temporal discounting. Journal of the Experimental Analysis of Behavior, 99(1), 5873.10.1002/jeab.6CrossRefGoogle ScholarPubMed
Zbrodoff, N. J., & Logan, G. D. (1986). On the autonomy of mental processes: A case study of arithmetic. Journal of Experimental Psychology: General, 115(2), 118.10.1037/0096-3445.115.2.118CrossRefGoogle ScholarPubMed