If   $B$  is the Blachke product with zeros
 $B$  is the Blachke product with zeros   $\{{{z}_{n}}\},\,\text{then}\,\left| {B}'\left( z \right) \right|\,\le \,{{\Psi }_{B}}\left( z \right)$ , where
 $\{{{z}_{n}}\},\,\text{then}\,\left| {B}'\left( z \right) \right|\,\le \,{{\Psi }_{B}}\left( z \right)$ , where
   $${{\Psi }_{B}}\,=\,\sum\limits_{n}{\frac{1-{{\left| {{z}_{n}} \right|}^{2}}}{{{\left| 1-{{\overline{z}}_{n}}z \right|}^{2}}}.}$$
 $${{\Psi }_{B}}\,=\,\sum\limits_{n}{\frac{1-{{\left| {{z}_{n}} \right|}^{2}}}{{{\left| 1-{{\overline{z}}_{n}}z \right|}^{2}}}.}$$  
Moreover, it is a well-known fact that, for   $0\,<\,p\,<\,\infty $ ,
 $0\,<\,p\,<\,\infty $ ,
   $${{M}_{p\left( r,{B}' \right)}}\,=\,{{\left( \frac{1}{2\pi }\,\int_{0}^{2\pi }{{{\left| {B}'\left( \text{r}{{\text{e}}^{i\theta }} \right) \right|}^{p}}d\theta } \right)}^{{1}/{p}\;}},\,0\,\le \,r\,<\,1,$$
 $${{M}_{p\left( r,{B}' \right)}}\,=\,{{\left( \frac{1}{2\pi }\,\int_{0}^{2\pi }{{{\left| {B}'\left( \text{r}{{\text{e}}^{i\theta }} \right) \right|}^{p}}d\theta } \right)}^{{1}/{p}\;}},\,0\,\le \,r\,<\,1,$$  
is bounded if and only if   ${{M}_{p}}\left( r,\,{{\Psi }_{B}} \right)$  is bounded. We find a Blaschke product
 ${{M}_{p}}\left( r,\,{{\Psi }_{B}} \right)$  is bounded. We find a Blaschke product   ${{B}_{0}}$  such that
 ${{B}_{0}}$  such that   ${{M}_{p}}\left( r,\,{{{{B}'}}_{0}} \right)$  and
 ${{M}_{p}}\left( r,\,{{{{B}'}}_{0}} \right)$  and   ${{M}_{p}}\left( r,{{\Psi }_{{{B}_{0}}}} \right)$  are not comparable for any
 ${{M}_{p}}\left( r,{{\Psi }_{{{B}_{0}}}} \right)$  are not comparable for any   $\frac{1}{2}\,<\,p\,<\,\infty $ . In addition, it is shown that, if
 $\frac{1}{2}\,<\,p\,<\,\infty $ . In addition, it is shown that, if   $0\,<\,p\,<\,\infty$ ,
 $0\,<\,p\,<\,\infty$ ,   $B$  is a Carleson-Newman Blaschke product and a weight
 $B$  is a Carleson-Newman Blaschke product and a weight   $\omega $  satisfies a certain regularity condition, then
 $\omega $  satisfies a certain regularity condition, then
   $${{\int }_{\mathbb{D}}}{{\left| {B}'\left( z \right) \right|}^{p}}\omega \left( z \right)dA\left( z \right)~\asymp {{\int }_{\mathbb{D}}}{{\Psi }_{B}}{{\left( z \right)}^{p}}\omega \left( z \right)dA\left( z \right),$$
 $${{\int }_{\mathbb{D}}}{{\left| {B}'\left( z \right) \right|}^{p}}\omega \left( z \right)dA\left( z \right)~\asymp {{\int }_{\mathbb{D}}}{{\Psi }_{B}}{{\left( z \right)}^{p}}\omega \left( z \right)dA\left( z \right),$$  
where   $d\,A\left( z \right)$  is the Lebesgue area measure on the unit disc.
 $d\,A\left( z \right)$  is the Lebesgue area measure on the unit disc.