Two-dimensional Euler flows, in the plane or on simple surfaces, possess a material invariant, namely the scalar vorticity normal to the surface. Consequently, flows with piecewise-uniform vorticity remain that way, and moreover evolve in a way which is entirely determined by the instantaneous shapes of the contours (interfaces) separating different regions of vorticity – this is known as ‘contour dynamics’. Unsteady vorticity contours or interfaces often grow in complexity (lengthen and fold), either as a result of vortex interactions (like mergers) or ‘filamentation’. In the latter, wave disturbances riding on a background, equilibrium contour shape appear to inevitably steepen and break, forming filaments, repeatedly– and perhaps endlessly. Here, we revisit the onset of filamentation. Building upon previous work and using a weakly nonlinear expansion to third order in wave amplitude, we derive a universal, parameter-free amplitude equation which applies (with a minor change) both to a straight interface and a circular patch in the plane, as well as circular vortex patches on the surface of a sphere. We show that this equation possesses a local, self-similar form describing the finite-time blow up of the wave slope (in a re-scaled long time proportional to the inverse square of the initial wave amplitude). We present numerical evidence for this self-similar blow-up solution, and for the conjecture that almost all initial conditions lead to finite-time blow up. In the full contour dynamics equations, this corresponds to the onset of filamentation.