We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For any integer $m\neq 0$, we prove that $f(x)=x^{9}+9mx^{6}+192m^{3}$ is irreducible over $\mathbb{Q}$ and that the Galois group of $f(x)$ over $\mathbb{Q}$ is the dihedral group of order 18. Moreover, we show that for infinitely many values of $m$, the splitting fields for $f(x)$ are distinct.
Kang and Liu [‘On supersolvability of factorized finite groups’, Bull. Math. Sci.3 (2013), 205–210] investigate the structure of finite groups that are products of two supersoluble groups. The goal of this note is to give a correct proof of their main theorem.
Let $G$ be a group and $\unicode[STIX]{x1D70E}=\{\unicode[STIX]{x1D70E}_{i}\mid i\in I\}$ some partition of the set of all primes. A subgroup $A$ of $G$ is $\unicode[STIX]{x1D70E}$-subnormal in $G$ if there is a subgroup chain $A=A_{0}\leq A_{1}\leq \cdots \leq A_{m}=G$ such that either $A_{i-1}\unlhd A_{i}$ or $A_{i}/(A_{i-1})_{A_{i}}$ is a finite $\unicode[STIX]{x1D70E}_{j}$-group for some $j=j(i)$ for $i=1,\ldots ,m$, and it is modular in $G$ if $\langle X,A\cap Z\rangle =\langle X,A\rangle \cap Z$ when $X\leq Z\leq G$ and $\langle A,Y\cap Z\rangle =\langle A,Y\rangle \cap Z$ when $Y\leq G$ and $A\leq Z\leq G$. The group $G$ is called $\unicode[STIX]{x1D70E}$-soluble if every chief factor $H/K$ of $G$ is a finite $\unicode[STIX]{x1D70E}_{i}$-group for some $i=i(H/K)$. In this paper, we describe finite $\unicode[STIX]{x1D70E}$-soluble groups in which every $\unicode[STIX]{x1D70E}$-subnormal subgroup is modular.
Let $k$ be a nonnegative integer. A subgroup $X$ of a group $G$ has normal length $k$ in $G$ if all chains between $X$ and its normal closure $X^{G}$ have length at most $k$, and $k$ is the length of at least one of these chains. The group $G$ is said to have finite normal length if there is a finite upper bound for the normal lengths of its subgroups. The aim of this paper is to study groups of finite normal length. Among other results, it is proved that if all subgroups of a locally (soluble-by-finite) group $G$ have finite normal length in $G$, then the commutator subgroup $G^{\prime }$ is finite and so $G$ has finite normal length. Special attention is given to the structure of groups of normal length $2$. In particular, it is shown that finite groups with this property admit a Sylow tower.
Let a prime $p$ divide the order of a finite real reflection group. We classify the reflection subgroups up to conjugacy that are minimal with respect to inclusion, subject to containing a $p$-Sylow subgroup. For Weyl groups, this is achieved by an algorithm inspired by the Borel–de Siebenthal algorithm. The cases where there is not a unique conjugacy class of reflection subgroups minimally containing the $p$-Sylow subgroups are the groups of type $F_{4}$ when $p=2$ and $I_{2}(m)$ when $m\geq 6$ is even but not a power of $2$ for each odd prime divisor $p$ of $m$. The classification significantly reduces the cases required to describe the $p$-Sylow subgroups of finite real reflection groups.
Let $G$ be a finite group. Let $\operatorname{cl}(G)$ be the set of conjugacy classes of $G$ and let $\operatorname{ecl}_{p}(G)$ be the largest integer such that $p^{\operatorname{ecl}_{p}(G)}$ divides $|C|$ for some $C\in \operatorname{cl}(G)$. We prove the following results. If $\operatorname{ecl}_{p}(G)=1$, then $|G:F(G)|_{p}\leq p^{4}$ if $p\geq 3$. Moreover, if $G$ is solvable, then $|G:F(G)|_{p}\leq p^{2}$.
The catenary degree is an invariant that measures the distance between factorisations of elements within an atomic monoid. In this paper, we classify which finite subsets of $\mathbb{Z}_{\geq 0}$ occur as the set of catenary degrees of a numerical monoid (that is, a co-finite, additive submonoid of $\mathbb{Z}_{\geq 0}$). In particular, we show that, with one exception, every finite subset of $\mathbb{Z}_{\geq 0}$ that can possibly occur as the set of catenary degrees of some atomic monoid is actually achieved by a numerical monoid.
We show that if a finitely generated group $G$ has a nonelementary WPD action on a hyperbolic metric space $X$, then the number of $G$-conjugacy classes of $X$-loxodromic elements of $G$ coming from a ball of radius $R$ in the Cayley graph of $G$ grows exponentially in $R$. As an application we prove that for $N\geq 3$ the number of distinct $\text{Out}(F_{N})$-conjugacy classes of fully irreducible elements $\unicode[STIX]{x1D719}$ from an $R$-ball in the Cayley graph of $\text{Out}(F_{N})$ with $\log \unicode[STIX]{x1D706}(\unicode[STIX]{x1D719})$ of the order of $R$ grows exponentially in $R$.
We examine dynamical systems which are ‘nonchaotic’ on a big (in the sense of Lebesgue measure) set in each neighbourhood of a fixed point $x_{0}$, that is, the entropy of this system is zero on a set for which $x_{0}$ is a density point. Considerations connected with this family of functions are linked with functions attracting positive entropy at $x_{0}$, that is, each mapping sufficiently close to the function has positive entropy on each neighbourhood of $x_{0}$.
Based on the abstract version of the Smital property, we introduce an operator $DS$. We use it to characterise the class of semitopological abelian groups, for which addition is a quasicontinuous operation.
Let ${\mathcal{S}}$ denote the class of analytic and univalent functions in $\mathbb{D}:=\{z\in \mathbb{C}:|z|<1\}$ which are of the form $f(z)=z+\sum _{n=2}^{\infty }a_{n}z^{n}$. We determine sharp estimates for the Toeplitz determinants whose elements are the Taylor coefficients of functions in ${\mathcal{S}}$ and certain of its subclasses. We also discuss similar problems for typically real functions.
We establish a new sufficient condition under which a monoid is nonfinitely based and apply this condition to Lee monoids $L_{\ell }^{1}$, obtained by adjoining an identity element to the semigroup generated by two idempotents $a$ and $b$ with the relation $0=abab\cdots \,$ (length $\ell$). We show that every monoid $M$ which generates a variety containing $L_{5}^{1}$ and is contained in the variety generated by $L_{\ell }^{1}$ for some $\ell \geq 5$ is nonfinitely based. We establish this result by analysing $\unicode[STIX]{x1D70F}$-terms for $M$, where $\unicode[STIX]{x1D70F}$ is a certain nontrivial congruence on the free semigroup. We also show that if $\unicode[STIX]{x1D70F}$ is the trivial congruence on the free semigroup and $\ell \leq 5$, then the $\unicode[STIX]{x1D70F}$-terms (isoterms) for $L_{\ell }^{1}$ carry no information about the nonfinite basis property of $L_{\ell }^{1}$.
The main aim of this article is to establish analogues of Landau’s theorem for solutions to the $\overline{\unicode[STIX]{x2202}}$-equation in Dirichlet-type spaces.
We prove the sharp inequality $|H_{3,1}(f)|\leq 4/135$ for convex functions, that is, for analytic functions $f$ with $a_{n}:=f^{(n)}(0)/n!,~n\in \mathbb{N}$, such that
We consider the uniqueness of an entire function and a linear differential polynomial generated by it. One of our results improves a result of Li and Yang [‘Value sharing of an entire function and its derivatives’, J. Math. Soc. Japan51(4) (1999), 781–799].
Let ${\mathcal{H}}ol(B_{d})$ denote the space of holomorphic functions on the unit ball $B_{d}$ of $\mathbb{C}^{d}$, $d\geq 1$. Given a log-convex strictly positive weight $w(r)$ on $[0,1)$, we construct a function $f\in {\mathcal{H}}ol(B_{d})$ such that the standard integral means $M_{p}(f,r)$ and $w(r)$ are equivalent for any $p$ with $0<p\leq \infty$. We also obtain similar results related to volume integral means.
We give a succinct proof of a duality theorem obtained by Révész [‘Some trigonometric extremal problems and duality’, J. Aust. Math. Soc. Ser. A 50 (1991), 384–390] which concerns extremal quantities related to trigonometric polynomials. The key tool of our new proof is an intersection formula on dual cones in real Banach spaces. We show another application of this intersection formula which is related to integral estimates of nonnegative positive-definite functions.
It is shown that various definitions of $\unicode[STIX]{x1D711}$-Connes amenability and $\unicode[STIX]{x1D711}$-contractibility are equivalent to older and simpler concepts.
Let $\unicode[STIX]{x1D6FA}$ be a member of a certain class of convex ellipsoids of finite/infinite type in $\mathbb{C}^{2}$. In this paper, we prove that every holomorphic function in $L^{p}(\unicode[STIX]{x1D6FA})$ can be approximated by holomorphic functions on $\bar{\unicode[STIX]{x1D6FA}}$ in $L^{p}(\unicode[STIX]{x1D6FA})$-norm, for $1\leq p<\infty$. For the case $p=\infty$, the continuity up to the boundary is additionally required. The proof is based on $L^{p}$ bounds in the additive Cousin problem.
We use properties of the gamma function to estimate the products $\prod _{k=1}^{n}(4k-3)/4k$ and $\prod _{k=1}^{n}(4k-1)/4k$, motivated by the work of Chen and Qi [‘Completely monotonic function associated with the gamma function and proof of Wallis’ inequality’, Tamkang J. Math.36(4) (2005), 303–307] and Mortici et al. [‘Completely monotonic functions and inequalities associated to some ratio of gamma function’, Appl. Math. Comput.240 (2014), 168–174].