We obtain an upper bound for the number of solutions to the system of 
$m$ congruences of the type 
$$\begin{eqnarray}\displaystyle \mathop{\prod }_{i=1}^{{\it\nu}}(x_{i}+s_{i})\equiv {\it\lambda}_{j}~(\text{mod }p)\quad j=1,\ldots ,m, & & \displaystyle \nonumber\end{eqnarray}$$  modulo a prime 
$p$, with variables 
$1\leq x_{i}\leq h$, 
$i=1,\ldots ,{\it\nu}$ and arbitrary integers 
$s_{j},{\it\lambda}_{j}$, 
$j=1,\ldots ,m$, for a parameter 
$h$ significantly smaller than 
$p$. We also mention some applications of this bound.