To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This is a companion book to Asymptotic Analysis of Random Walks: Heavy-Tailed Distributions by A.A. Borovkov and K.A. Borovkov. Its self-contained systematic exposition provides a highly useful resource for academic researchers and professionals interested in applications of probability in statistics, ruin theory, and queuing theory. The large deviation principle for random walks was first established by the author in 1967, under the restrictive condition that the distribution tails decay faster than exponentially. (A close assertion was proved by S.R.S. Varadhan in 1966, but only in a rather special case.) Since then, the principle has always been treated in the literature only under this condition. Recently, the author jointly with A.A. Mogul'skii removed this restriction, finding a natural metric for which the large deviation principle for random walks holds without any conditions. This new version is presented in the book, as well as a new approach to studying large deviations in boundary crossing problems. Many results presented in the book, obtained by the author himself or jointly with co-authors, are appearing in a monograph for the first time.
The relatively young theory of structured dependence between stochastic processes has many real-life applications in areas including finance, insurance, seismology, neuroscience, and genetics. With this monograph, the first to be devoted to the modeling of structured dependence between random processes, the authors not only meet the demand for a solid theoretical account but also develop a stochastic processes counterpart of the classical copula theory that exists for finite-dimensional random variables. Presenting both the technical aspects and the applications of the theory, this is a valuable reference for researchers and practitioners in the field, as well as for graduate students in pure and applied mathematics programs. Numerous theoretical examples are included, alongside examples of both current and potential applications, aimed at helping those who need to model structured dependence between dynamic random phenomena.
In this chapter the concept of strong Markov consistency and the concept of weak Markov consistency for finite time-inhomogeneous multivariate Markov chainsis introduced and studied. In particular, necessary and sufficient conditions for both types of Markov consistency are given. The main tool used here is the semimartingale characterization of finite Markov chains. In addition, operator interpretation of a sufficient condition for strong Markov consistency and a necessary condition for weak Markov consistency are provided.By definition, strong Markov consistency implies the weak Markov consistency. In this chapter we provide sufficient condition for the reverse implication to hold.
In this chapter the concept of strong Markov consistency for multivariate Markov families and for multivariate Markov processes is introduced and studied. Strong Markov consistency of a multivariate Markov family/process, if satisfied, provides for invariance of the Markov property under coordinate projections, a property that is important in various practical applications. We only consider conservative Markov processes and Markov families.In Section 2.1, we study the so-called strong Markov consistency for multivariate Markov families and multivariate Markov processes taking values in an arbitrary metric space. This study is geared towards formulating a general framework within which the strong Markov consistency can be conveniently analyzed. In Section 2.2, we specify our study of the strong Markov consistency to the case of multivariate Feller-Markov families taking values in Rn. The analysis is first carried in the time-inhomogeneous case, and then in the time homogeneous case where a more comprehensive study can be done.
In this chapter we introduce and discuss various concepts of consistency for multivariate special semimartingales. The results here are mainly based on Theorem 5.1, which generalizes to the case of semimartingales that are not special. Thus, these results themselves generalize in a straightforward manner to the case of semimartingales that are not special. We chose to work with special semimartingales in order to ease somewhat the presentation. Throughout this chapter the semimartingale truncation functions will be considered to be standard truncation functions of appropriate dimensions. In what follows, the semimartingale characteristics will be always computed with respect to the relevant standard truncation functions. Thus, the semimartingale characteristics for all the semimartingales showing in the rest of this chapter are considered to be unique (as functions of the trajectories on the canonical space) once the filtration is chosen with respect to which the characteristics are computed. The theory is illustrated by various examples.
In this brief chapter we discuss the concept of semimartingale structure for a collection of special semimartingales. As in Chapter 5, we confine ourselves to the bivariate case only, and we consider semimartingale characteristics with respect to the standard truncation function. We start with definition of the semimartingale structure, and then we follow with examples.