To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Using Bishop's work on constructive analysis as a framework, this monograph gives a systematic, detailed and general constructive theory of probability theory and stochastic processes. It is the first extended account of this theory: almost all of the constructive existence and continuity theorems that permeate the book are original. It also contains results and methods hitherto unknown in the constructive and nonconstructive settings. The text features logic only in the common sense and, beyond a certain mathematical maturity, requires no prior training in either constructive mathematics or probability theory. It will thus be accessible and of interest, both to probabilists interested in the foundations of their speciality and to constructive mathematicians who wish to see Bishop's theory applied to a particular field.
The main subject of this introductory book is simple random walk on the integer lattice, with special attention to the two-dimensional case. This fascinating mathematical object is the point of departure for an intuitive and richly illustrated tour of related topics at the active edge of research. It starts with three different proofs of the recurrence of the two-dimensional walk, via direct combinatorial arguments, electrical networks, and Lyapunov functions. After reviewing some relevant potential-theoretic tools, the reader is guided toward the relatively new topic of random interlacements - which can be viewed as a 'canonical soup' of nearest-neighbour loops through infinity - again with emphasis on two dimensions. On the way, readers will visit conditioned simple random walks - which are the 'noodles' in the soup - and also discover how Poisson processes of infinite objects are constructed and review the recently introduced method of soft local times. Each chapter ends with many exercises, making it suitable for courses and independent study.
Elementary treatments of Markov chains, especially those devoted to discrete-time and finite state-space theory, leave the impression that everything is smooth and easy to understand. This exposition of the works of Kolmogorov, Feller, Chung, Kato, and other mathematical luminaries, which focuses on time-continuous chains but is not so far from being elementary itself, reminds us again that the impression is false: an infinite, but denumerable, state-space is where the fun begins. If you have not heard of Blackwell's example (in which all states are instantaneous), do not understand what the minimal process is, or do not know what happens after explosion, dive right in. But beware lest you are enchanted: 'There are more spells than your commonplace magicians ever dreamed of.'