To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter, we will introduce the , which is a formulation of quantum mechanics equivalent to the Schrödinger equation, but has a profoundly distinct interpretation. Further, the path integral is very easily extended to incorporate special relativity, which is very challenging and inconvenient within the context of the Schrödinger equation. So, what is the idea of this path integral? Our goal will be to calculate the amplitude for a quantum mechanical particle that starts at position xi at time t = 0 and ends at position xf at some later time . In some sense, this question is analogous to what you ask in an introduction to kinematics in introductory physics; however, its analysis in quantum mechanics will prove to be a bit more complicated than that in the first week of your first course in physics.
The mathematical and physical construction of quantum mechanics is undeniably beautiful, but as hinted in the Introduction, why the universe should ultimately be quantum mechanical is mysterious. Of course, empirical science can never answer the question of “Why?” definitively, but only establish the rules that govern Nature through experiment. Nevertheless, there were several points in our discussion of the motivation for the Hilbert space, the Born rule, or the Dirac–von Neumann axioms that seemed to be completely inexplicable and potentially inconsistent with the guiding principles we used. In this chapter, we survey a few of these points from an introductory, modern perspective. Quantum mechanics works, makes precise predictions, and agrees with experiment, but what quantum mechanics is is still very much an open question.
We’ve come a long way from the fundamental mathematical properties of linear operators to the profound physical interpretations of them. We have finally developed the necessary background for deriving the fundamental equation of quantum mechanics, the Schrödinger equation.
In the previous chapter, we studied the consequences of rotations and angular momentum in three spatial dimensions, building up to the topic of this chapter: the quantum mechanics of the hydrogen atom. Hydrogen is, of course, the lightest element of the periodic table and consists of a proton and an electron bound through electromagnetism. Our goal for studying this problem is to determine the bound-state energy eigenstates, just like we did with the infinite square well and harmonic oscillator. These energy eigenstates will then tell us how the proton and electron are positioned with respect to one another in space, as well as the energy levels and how energy is transferred when the hydrogen atom transforms from one energy level to another. As always, our goal is to diagonalize the Hamiltonian ; that is, determine the states and energies E such that
We show that the only finite quasi-simple non-abelian groups that can faithfully act on rationally connected threefolds are the following groups: ${\mathfrak{A}}_5$, ${\text{PSL}}_2(\textbf{F}_7)$, ${\mathfrak{A}}_6$, ${\text{SL}}_2(\textbf{F}_8)$, ${\mathfrak{A}}_7$, ${\text{PSp}}_4(\textbf{F}_3)$, ${\text{SL}}_2(\textbf{F}_{7})$, $2.{\mathfrak{A}}_5$, $2.{\mathfrak{A}}_6$, $3.{\mathfrak{A}}_6$ or $6.{\mathfrak{A}}_6$. All of these groups with a possible exception of $2.{\mathfrak{A}}_6$ and $6.{\mathfrak{A}}_6$ indeed act on some rationally connected threefolds.
In this paper, we identify the five dimensional analogue of the finite energy foliations introduced by Hofer–Wysocki–Zehnder for the study of three dimensional Reeb flows, and show that these exist for the spatial circular restricted three-body problem (SCR3BP) whenever the planar dynamics is convex. We introduce the notion of a fiberwise-recurrent point, which may be thought of as a symplectic version of the leafwise intersections introduced by Moser, and show that they exist in abundance for a perturbative regime in the SCR3BP. We then use this foliation to induce a Reeb flow on the standard 3-sphere, via the use of pseudo-holomorphic curves, to be understood as the best approximation of the given dynamics that preserves the foliation. We discuss examples, further geometric structures, and speculate on possible applications.
We study the moments $M_k(T;\,\alpha) = \int_T^{2T} |\zeta(s,\alpha)|^{2k}\,dt$ of the Hurwitz zeta function $\zeta(s,\alpha)$ on the critical line, $s = 1/2 + it$ with a rational shift $\alpha \in \mathbb{Q}$. We conjecture, in analogy with the Riemann zeta function, that $M_k(T;\,\alpha) \sim c_k(\alpha) T (\!\log T)^{k^2}$. Using heuristics from analytic number theory and random matrix theory, we conjecturally compute $c_k(\alpha)$. In the process, we investigate moments of products of Dirichlet L-functions on the critical line. We prove some of our conjectures for the cases $k = 1,2$.
We show, from a topological viewpoint, that most numbers are not normal in a strong sense. More precisely, the set of numbers $x \in (0,1]$ with the following property is comeager: for all integers $b\ge 2$ and $k\ge 1$, the sequence of vectors made by the frequencies of all possibile strings of length k in the b-adic representation of x has a maximal subset of accumulation points, and each of them is the limit of a subsequence with an index set of nonzero asymptotic density. This extends and provides a streamlined proof of the main result given by Olsen (2004) in this Journal. We provide analogues in the context of analytic P-ideals and regular matrices.
On small Seifert fibered spaces $M(e_0;\,r_1,r_2,r_3)$ with $e_0\neq-1,-2,$ all tight contact structures are Stein fillable. This is not the case for $e_0=-1$ or $-2$. However, for negative twisting structures it is expected that they are all symplectically fillable. Here, we characterise fillable structures among zero-twisting contact structures on small Seifert fibered spaces of the form $M\left({-}1;\,r_1,r_2,r_3\right)$. The result is obtained by analysing monodromy factorizations of associated planar open books.
Continuous Groups for Physicists is written for graduate students as well as researchers working in the field of theoretical physics. The text has been designed uniquely and it balances coverage of advanced and non-standard topics with an equal focus on the basic concepts for a thorough understanding. The book describes the general theory of Lie groups and Lie algebras, the passage between them, and their unitary/ Hermitian representations in the quantum mechanical setting. The four infinite classical families of compact simple Lie groups and their representations are covered in detail. Readers will benefit from the discussions on topics like spinor representations of real orthogonal groups, the Schwinger representation of a group, induced representations, systems of coherent states, real symplectic groups important in quantum mechanics, Wigner's theorem on symmetry operations in quantum mechanics, ray representations of Lie groups, and groups associated with non-relativistic and relativistic space-time.