To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Symmetries are a key idea in physics. In the classical world, they are associated to conservation laws, courtesy of Emmy Noether. The same, and more, is true in the quantum world. In this chapter we explore how symmetries manifest themselves in quantum mechanics. Special attention will be given to time evolution and the role of SU(2) and angular momentum
Our goal in this chapter is to look more closely at the underlying mathematical formalism of quantum mechanics. We will look at the quantum state, how it evolves in time, and what it means to interrogate the state by performing a measurement. It is here that we meet the famed Heisenberg uncertainty principle.
Until now, we’ve only considered the motion of a single particle. If our goal is to understand everything in the universe, that’s a little limiting. In this section, we take a small step forwards: we will describe the dynamics of multiple interacting particles. Among other things, this will highlight the importance of the conservation of momentum and angular momentum.
Classical mechanics starts with Newtons three laws, among them the famous F=ma. But these laws are not quite as transparent as they may seem. In this chapter, we introduce the laws and provide some commentary. We will also learn about Galileos ideas of relativity, a precursor to the much more shocking ideas of Einstein that come later.
Quantum particles, like happy families, are all the same. In fact, not only are they the same. They are literally indistinguishable. This has deep and important consequences that are fleshed out in this chapter.
The real fun of the Maxwell equations comes when we understand the link between electricity and magnetism. A changing magnetic flux can induce currents to flow. This is Faraday’s law of induction. We start this chapter by understanding this link and end this chapter with one of the great unifying discoveries of physics: that the interplay between electric and magnetic fields is what gives rise to light.
In this chapter, we explore how electric and magnetic fields behave inside materials. The physics can be remarkably complicated and messy but the end result are described by a few, very minor, changes to the Maxwell equations. This allows us to understand various properties of materials, such as conductors.
What is the essence of quantum mechanics? What makes the quantum world truly different from the classical one? Is it the discrete spectrum of energy levels? Or the inherent lack of determinism? The purpose of this chapter is to go back to basics in an attempt to answer this question. We will look at the framework of quantum mechanics in an attempt to get a better understanding of what we mean by a “state”, and what we mean by a “measurement”. A large part of our focus will be on the power of quantum entanglement.
If all of the entries of a large $S_n$ character table are covered up and you are allowed to uncover one entry at a time, then how can you quickly identify all of the indexing characters and conjugacy classes? We present a fast algorithmic solution that works even when n is so large that almost none of the entries of the character table can be computed. The fraction of the character table that needs to be uncovered is $O( n^2 \exp({-}2\pi\sqrt{n/6}))$, and for many of these entries we are only interested in whether the entry is zero.
Continuing our work on group-theoretic generalisations of the prime Ax–Katz Theorem, we give a lower bound on the p-adic divisibility of the cardinality of the set of simultaneous zeros $Z(f_1,f_2,\dots,f_r)$ of r maps $f_j\,{:}\,A\rightarrow B_j$ between arbitrary finite commutative groups A and $B_j$ in terms of the invariant factors of $A, B_1,B_2, \cdots,B_r$ and the functional degrees of the maps $f_1,f_2, \dots,f_r$.
Let p be an odd prime, and suppose that $E_1$ and $E_2$ are two elliptic curves which are congruent modulo p. Fix an Artin representation $\tau\,{:}\,G_{F}\rightarrow \mathrm{GL}_2(\mathbb{C})$ over a totally real field F, induced from a Hecke character over a CM-extension $K/F$. Assuming $E_1$ and $E_2$ are ordinary at p, we compute the variation in the $\mu$- and $\lambda$-invariants for the $\tau$-part of the Iwasawa Main Conjecture, as one switches from $E_1$ to $E_2$. Provided an Euler system exists, it will follow directly that IMC$(E_1,\tau)$ is true if and only if IMC$(E_2,\tau)$ is true.
Weighted sieves are used to detect numbers with at most S prime factors with $S \in \mathbb{N}$ as small as possible. When one studies problems with two variables in somewhat symmetric roles (such as Chen primes, that is primes p such that $p+2$ has at most two prime factors), one can utilise the switching principle. Here we discuss how different sieve weights work in such a situation, concentrating in particular on detecting a prime along with a product of at most three primes.
As applications, we improve on the works of Yang and Harman concerning Diophantine approximation with a prime and an almost prime, and prove that, in general, one can find a pair $(p, P_3)$ when both the original and the switched problem have level of distribution at least $0.267$.
Let $\pi$ be an irreducible cuspidal automorphic representation of ${\mathrm{GL}}_n(\mathbb{A}_{\mathbb{Q}})$ with associated L-function $L(s, \pi)$. We study the behaviour of the partial Euler product of $L(s, \pi)$ at the centre of the critical strip. Under the assumption of the Generalised Riemann Hypothesis for $L(s, \pi)$ in conjunction with the Ramanujan–Petersson conjecture as necessary, we establish an asymptotic, off a set of finite logarithmic measure, for the partial Euler product at the central point, which confirms a conjecture of Kurokawa (2012). As an application, we obtain results towards Chebyshev’s bias in the recently proposed framework of Aoki–Koyama (2023).
This paper discusses variants of Weber’s class number problem in the spirit of arithmetic topology to connect the results of Sinnott–Kisilevsky and Kionke. Let p be a prime number. We first prove the p-adic convergence of class numbers in a ${\mathbb{Z}_{p}}$-extension of a global field and a similar result in a ${\mathbb{Z}_{p}}$-cover of a compact 3-manifold. Secondly, we establish an explicit formula for the p-adic limit of the p-power-th cyclic resultants of a polynomial using roots of unity of orders prime to p, the p-adic logarithm, and the Iwasawa invariants. Finally, we give thorough investigations of torus knots, twist knots, and elliptic curves; we complete the list of the cases with p-adic limits being in ${\mathbb{Z}}$ and find the cases such that the base p-class numbers are small and $\nu$’s are arbitrarily large.