To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We report the discovery of a bow-shock pulsar wind nebula (PWN), named Potoroo, and the detection of a young pulsar J1638$-$4713 that powers the nebula. We present a radio continuum study of the PWN based on 20-cm observations obtained from the Australian Square Kilometre Array Pathfinder (ASKAP) and MeerKAT. PSR J1638$-$4713 was identified using Parkes radio telescope observations at frequencies above 3 GHz. The pulsar has the second-highest dispersion measure of all known radio pulsars (1 553 pc cm$^{-3}$), a spin period of 65.74 ms and a spin-down luminosity of $\dot{E}=6.1\times10^{36}$ erg s$^{-1}$. The PWN has a cometary morphology and one of the greatest projected lengths among all the observed pulsar radio tails, measuring over 21 pc for an assumed distance of 10 kpc. The remarkably long tail and atypically steep radio spectral index are attributed to the interplay of a supernova reverse shock and the PWN. The originating supernova remnant is not known so far. We estimated the pulsar kick velocity to be in the range of 1 000–2 000 km s$^{-1}$ for ages between 23 and 10 kyr. The X-ray counterpart found in Chandra data, CXOU J163802.6$-$471358, shows the same tail morphology as the radio source but is shorter by a factor of 10. The peak of the X-ray emission is offset from the peak of the radio total intensity (Stokes $\rm I$) emission by approximately 4.7$^{\prime\prime}$, but coincides well with circularly polarised (Stokes $\rm V$) emission. No infrared counterpart was found.
The unprecedented imaging power of James Webb Space Telescope (JWST) provides new abilities to observe the shapes of objects in the early Universe in a way that has not been possible before. Recently, JWST acquired a deep field image inside the same field imaged in the past as the Hubble Space Telescope (HST) Ultra Deep Field. Computer-based quantitative analysis of spiral galaxies in that field shows that among 34 galaxies for which their rotation of direction can be determined by the shapes of the arms, 24 rotate clockwise, and just 10 rotate counterclockwise. The one-tailed binomial distribution probability to have asymmetry equal or stronger than the observed asymmetry by chance is $\sim$0.012. While the analysis is limited by the small size of the data, the observed asymmetry is aligned with all relevant previous large-scale analyses from all premier digital sky surveys, all show a higher number of galaxies rotating clockwise in that part of the sky, and the magnitude of the asymmetry increases as the redshift gets higher. This paper also provides data and analysis to reproduce previous experiments suggesting that the distribution of galaxy rotation in the Universe is random, to show that the exact same data used in these studies in fact show non-random distribution, and in excellent agreement with the results shown here. These findings reinforce consideration of the possibility that the directions of rotation of spiral galaxies as observed from Earth are not necessarily randomly distributed. The explanation can be related to the large-scale structure of the Universe, but can also be related to a possible anomaly in the physics of galaxy rotation.
This study builds upon our prior work to further explore and unravel the effects of saturated thermal conduction within a viscous resistive MHD framework on the intricate transport mechanisms of angular momentum and energy in disc-jet systems. We conducted a series of 2.5-dimensional non-relativistic time-dependent numerical simulations using the PLUTO code. Employing a saturation parameter spanning [0.002-0.01], our results are consistent with previous investigations that omitted consideration of thermal conduction, affirming the established understanding that kinetic torque plays a predominant role in governing the total accretion angular momentum, surpassing the magnetic contribution within the disc. At the initial time steps of our calculations, we find that thermal conduction enhances this kinetic contribution, while concurrently diminishing the effect of magnetic contribution. In contrast to the prevailing influence of kinetic torque within the disc, we also assert the magnetic torque as the primary contributor to the total ejection angular momentum. We further unveil that doubling the saturation parameter leads to bolstering of approximately $23.7\%$ in the integral dominance of magnetic torque compared to kinetic torque within the jet. Our findings reveal that doubling the effect of thermal conduction improves the integral total accretion power by approximately 2%, thereby slightly amplifying the energy content within the system and increasing overall energy output. We underscore that as the local energy dissipation within the disc intensifies, the significance of the enthalpy accretion flux increases at the expense of the jet power. We reveal that increasing the saturation parameter mitigates enthalpy accumulation within the disc, and further restricts the jet’s energy extraction from the disc. This limitation is determined in our analysis through the decrease in the integral ratio between the bipolar jet and liberated power of approximately $13.8\%$, for twice the strength of the saturation parameter. We identify the Poynting flux as the primary contributor to total jet power, with thermal conduction exerting minimal influence on magnetic contributions. Additionally, we emphasise the integration of jet enthalpy as another significant factor in determining overall jet power, highlighting a distinct correlation between the rise in saturation parameter and heightened enthalpy contribution. Moreover, we observe the promotion of Poynting flux over kinetic flux at advanced time steps of our simulations, a trend supported by the presence of thermal conduction, which demonstrates an integral increase of approximately $11.2\%$ when considering a doubling of the saturation parameter.
We present a new method – called HINORA (HIgh-NOise RANdom SAmple Consensus) – for the identification of regular structures in 3D point distributions. Motivated by the possible existence of the so-called Council of Giants, that is, a ring of 12 massive galaxies surrounding the Local Group in the Local Sheet with a radius of 3.75 Mpc, we apply HINORA to the Local Volume Galaxy catalogue confirming its existence. When varying the lower limit of K-band luminosity of the galaxy entering the catalogue, we further report on the existence of another ring-like structure in the Local Volume that now contains the Milky Way and M31. However, this newly found structure is dominated by low-mass (satellite) galaxies. While we here simply present the novel method as well as its first application to observational data, follow-up work using numerical simulations of cosmic structure formation shall shed light into the origin of such regular patterns in the galaxy distribution. Further, the method is equally suited to identify similar (or even different) structures in various kinds of astrophysical data (e.g. locating the actual ‘baryonic-acoustic oscillation spheres’ in galaxy redshift surveys).
In large-scale galaxy surveys, particularly deep ground-based photometric studies, galaxy blending was inevitable. Such blending posed a potential primary systematic uncertainty for upcoming surveys. Current deblenders predominantly depended on analytical modelling of galaxy profiles, facing limitations due to inflexible and imprecise models. We presented a novel approach, using a U-net structured transformer-based network for deblending astronomical images, which we term the CAT-deblender. It was trained using both RGB and the grz-band images, spanning two distinct data formats present in the Dark Energy Camera Legacy Survey (DECaLS) database, including galaxies with diverse morphologies in the training dataset. Our method necessitated only the approximate central coordinates of each target galaxy, sourced from galaxy detection, bypassing assumptions on neighbouring source counts. Post-deblending, our RGB images retained a high signal-to-noise peak, consistently showing superior structural similarity against ground truth. For multi-band images, the ellipticity of central galaxies and median reconstruction error for r-band consistently lie within $\pm$0.025 to $\pm$0.25, revealing minimal pixel residuals. In our comparison of deblending capabilities focused on flux recovery, our model showed a mere 1% error in magnitude recovery for quadruply blended galaxies, significantly outperforming SExtractor’s higher error rate of 4.8%. Furthermore, by cross-matching with the publicly accessible overlapping galaxy catalogs from the DECaLS database, we successfully deblended 433 overlapping galaxies. Moreover, we have demonstrated effective deblending of 63 733 blended galaxy images, randomly chosen from the DECaLS database.
We investigate the relationship between a dark matter halo’s mass profile and measures of the velocity dispersion of kinematic tracers within its gravitational potential. By predicting the scaling relation of the halo mass with the aperture velocity dispersion, $M_\mathrm{vir} - \unicode{x03C3}_\mathrm{ap}$, we present the expected form and dependence of this halo mass tracer on physical parameters within our analytic halo model: parameterised by the halo’s negative inner logarithmic density slope, $\unicode{x03B1}$, its concentration parameter, c, and its velocity anisotropy parameter, $\unicode{x03B2}$. For these idealised halos, we obtain a general solution to the Jeans equation, which is projected over the line of sight and averaged within an aperture to form the corresponding aperture velocity dispersion profile. Through dimensional analysis, the $M_\mathrm{vir} - \unicode{x03C3}_\mathrm{ap}$ scaling relation is devised explicitly in terms of analytical bounds for these aperture velocity dispersion profiles: allowing constraints to be placed on this relation for motivated parameter choices. We predict the $M_{200} - \unicode{x03C3}_\mathrm{ap}$ and $M_{500} - \unicode{x03C3}_\mathrm{ap}$ scaling relations, each with an uncertainty of $60.5\%$ and $56.2\%$, respectively. These halo mass estimates are found to be weakly sensitive to the halo’s concentration and mass scale, and most sensitive to the size of the aperture radius in which the aperture velocity dispersion is measured, the maximum value for the halo’s inner slope, and the minimum and maximum values of the velocity anisotropy. Our results show that a halo’s structural and kinematic profiles impose only a minor uncertainty in estimating its mass. Consequently, spectroscopic surveys aimed at constraining the halo mass using kinematic tracers can focus on characterising other, more complex sources of uncertainty and observational systematics.
Post-asymptotic giant branch stars (post-AGB) in binary systems, with typical orbital periods between $\sim\!100$ to $\sim$1 000 days, result from a poorly understood interaction that terminates their precursory AGB phase. The majority of these binaries display a photospheric anomaly called ‘chemical depletion’, thought to arise from an interaction between the circumbinary disc and the post-AGB star, leading to the reaccretion of pure gas onto the star, devoid of refractory elements due to dust formation. In this paper, we focus on a subset of chemically peculiar binary post-AGBs in the Galaxy and the Magellanic Clouds (MCs). Our detailed stellar parameter and chemical abundance analysis utilising high-resolution optical spectra from VLT+UVES revealed that our targets span a $T_{\rm eff}$ of 4 900–7 250 K and [Fe/H] of −0.5 - −1.57 dex. Interestingly, these targets exhibit a carbon ([C/Fe] ranging from 0.5 - 1.0 dex, dependant on metallicity) and s-process enrichment ($\textrm{[s/Fe]}\,\geq\!1$dex) contrary to the commonly observed chemical depletion pattern. Using spectral energy distribution (SED) fitting and period–luminosity–colour (PLC) relation methods, we determine the luminosity of the targets (2 700–8 300 $\rm L_{\odot}$), which enables confirmation of their evolutionary phase and estimation of initial masses (as a function of metallicity) (1–2.5 $\textrm{M}_{\odot}$). In conjunction with predictions from dedicated ATON stellar evolutionary models, our results indicate a predominant intrinsic enrichment of carbon and s-process elements in our binary post-AGB targets. We qualitatively rule out extrinsic enrichment and inherited s-process enrichment from the host galaxy as plausible explanations for the observed overabundances. Our chemically peculiar subset of intrinsic carbon and s-process enriched binary post-AGBs also hints at potential variation in the efficiency of chemical depletion between stars with C-rich and O-rich circumbinary disc chemistries. However, critical observational studies of circumbinary disc chemistry, along with specific condensation temperature estimates in C-rich environments, are necessary to address gaps in our current understanding of disc-binary interactions inducing chemical depletion in binary post-AGB systems.
One of the best methods to investigate and calculate a desired quantity using available limited data is the Bayesian statistical method, which has been recently entered the field of nuclear astrophysics and can be used to evaluate the astrophysical S-factors, the cross sections and, as a result, the nuclear reaction rates of Big Bang Nucleosynthesis. This study tries to calculate the astrophysical S-factor and the rate of reaction T(d,n)4He as an important astrophysical reaction with the help of this method in energies lower that electron repulsive barrier, and for this purpose, it uses the R-Software, which leads to improved results in comparison with the non-Bayesian methods for the mentioned reaction rate.
Odd Radio Circles (ORCs) are a class of low surface brightness, circular objects approximately one arcminute in diameter. ORCs were recently discovered in the Australian Square Kilometre Array Pathfinder (ASKAP) data and subsequently confirmed with follow-up observations on other instruments, yet their origins remain uncertain. In this paper, we suggest that ORCs could be remnant lobes of powerful radio galaxies, re-energised by the passage of a shock. Using relativistic hydrodynamic simulations with synchrotron emission calculated in post-processing, we show that buoyant evolution of remnant radio lobes is alone too slow to produce the observed ORC morphology. However, the passage of a shock can produce both filled and edge-brightnened ORC-like morphologies for a wide variety of shock and observing orientations. Circular ORCs are predicted to have host galaxies near the geometric centre of the radio emission, consistent with observations of these objects. Significantly offset hosts are possible for elliptical ORCs, potentially causing challenges for accurate host galaxy identification. Observed ORC number counts are broadly consistent with a paradigm in which moderately powerful radio galaxies are their progenitors.
We model long-term magneto-rotational evolution of isolated neutron stars (INSs) with long initial spin periods. This analysis is motivated by the recent discovery of young long-period neutron stars (NSs) observed as periodic radio sources: PSR J0901-4046, GLEAM-X J1627-52, and GPM J1839-10. Our calculations demonstrate that for realistically rapid spin-down during the propeller stage INSs with velocities ${\lesssim}100$ km s$^{-1}$ and assumed long initial spin periods can reach the stage of accretion from the interstellar medium within at most a few billion years as they are born already at the propeller stage or sufficiently close to the critical period of the ejector-propeller transition. If NSs with long initial spin periods form a relatively large fraction of all Galactic NSs then the number of isolated accretors is substantially larger than it has been predicted by previous studies.
After more than five years of development, we present a new version of Dark Sage, a semi-analytic model (SAM) of galaxy formation that breaks the mould for models of its kind. Included among the major changes is an overhauled treatment of stellar feedback that is derived from energy conservation, operates on local scales, affects gas gradually over time rather than instantaneously, and predicts a mass loading factor for every galaxy. Building on the model’s resolved angular momentum structure of galaxies, we now consider the heating of stellar discs, delivering predictions for disc structure both radially and vertically. We add a further dimension to stellar discs by tracking the distribution of stellar ages in each annulus. Each annulus–age bin has its own velocity dispersion and metallicity evolved in the model. This allows Dark Sage to make structural predictions for galaxies that previously only hydrodynamic simulations could. We present the model as run on the merger trees of the highest-resolution gravity-only simulation of the MillenniumTNG suite. Despite its additional complexity relative to other SAMs, Dark Sage only has three free parameters, the least of any SAM, which we calibrate exclusively against the cosmic star formation history and the $z = 0$ stellar and H i mass functions using a particle-swarm optimisation method. The Dark Sage codebase, written in C and python, is publicly available at https://github.com/arhstevens/DarkSage.
We propose a new method for identifying active galactic nuclei (AGN) in low mass ($\mathrm{M}_*\leq10^{10}\mathrm{M}_\odot$) galaxies. This method relies on spectral energy distribution (SED) fitting to identify galaxies whose radio flux density has an excess over that expected from star formation alone. Combining data in the Galaxy and Mass Assembly (GAMA) G23 region from GAMA, Evolutionary Map of the Universe (EMU) early science observations, and Wide-field Infrared Survey Explorer (WISE), we compare this technique with a selection of different AGN diagnostics to explore the similarities and differences in AGN classification. We find that diagnostics based on optical and near-infrared criteria (the standard BPT diagram, the WISE colour criterion, and the mass-excitation, or MEx diagram) tend to favour detection of AGN in high mass, high luminosity systems, while the “ProSpect” SED fitting tool can identify AGN efficiently in low mass systems. We investigate an explanation for this result in the context of proportionally lower mass black holes in lower mass galaxies compared to higher mass galaxies and differing proportions of emission from AGN and star formation dominating the light at optical and infrared wavelengths as a function of galaxy stellar mass. We conclude that SED-derived AGN classification is an efficient approach to identify low mass hosts with low radio luminosity AGN.
Present-day elliptical, spiral and irregular galaxies are large systems made of stars, gas and dark matter. Their properties result from a variety of physical processes that have occurred during the nearly fourteen billion years since the Big Bang. This comprehensive textbook, which bridges the gap between introductory and specialized texts, explains the key physical processes of galaxy formation, from the cosmological recombination of primordial gas to the evolution of the different galaxies that we observe in the Universe today. In a logical sequence, the book introduces cosmology, illustrates the properties of galaxies in the present-day Universe, then explains the physical processes behind galaxy formation in the cosmological context, taking into account the most recent developments in this field. The text ends on how to find distant galaxies with multi-wavelength observations, and how to extract the physical and evolutionary properties based on imaging and spectroscopic data.
High energies emissions observed in X-ray binaries (XRBs), active galactic nuclei (AGNs) are linearly polarised. The prominent mechanism for X-ray is the Comptonization process. We revisit the theory for polarisation in Compton scattering with unpolarised electrons and note that the ($k \times k^{\prime}$)-coordinate (in which, ($k \times k^{\prime}$) acts as a z-axis, here k and k′ are incident and scattered photon momentum, respectively) is more convenient to describe it. Interestingly, for a fixed scattering plane the degree of polarisation PD after single scattering for randomly oriented low-energy unpolarised incident photons is $\sim$0.33. At the scattering angle $\theta$ = 0 or $\theta \equiv$ [0,25$^{\circ}$], the modulation curve of k′ exhibits the same PD and PA (angle of polarisation) of k, and even the distribution of projection of electric vector of k′ ($k^{\prime}_{e}$) on perpendicular plane to the k indicates same (so, an essential criteria for detector designing). We compute the polarisation state in Comptonization process using Monte Carlo methods with considering a simple spherical corona. We obtain the PD of emergent photons as a function of $\theta$-angle (or alternatively, the disc inclination angle i) on a meridian plane (i.e. the laws of darkening, formulated by Chandrasekhar (1946, ApJ, 103, 351) after single scattering with unpolarised incident photons. To explore the energy dependency we consider a general spectral parameter set corresponding to hard and soft states of XRBs, we find that for average scattering no. $\langle N_{sc}\rangle$$\sim$1.1 the PD is independent of energy and PA $\sim 90^{\circ}$ ($k^{\prime}_{e}$ is parallel to the disc plane), and for $\langle N_{sc}\rangle$$\sim$5 the PD value is maximum for $i=45^{\circ}$. We also compare the results qualitatively with observation of IXPE for five sources.
We present an initial analysis of Radio Frequency Interference (RFI) flagging statistics from archived Australian SKA Pathfinder (ASKAP) observations for the ‘Survey and Monitoring of ASKAP’s RFI environment and Trends’ (SMART) project. SMART is a two-part observatoryled project combining analysis of archived observations with a dedicated, comprehensive RFI survey. The survey component covers ASKAP’s full 700–1 800 MHz frequency range, including bands not typically used due to severe RFI. Observations are underway to capture a detailed snapshot of the ASKAP RFI environment over representative 24 h periods. In addition to this dedicated survey, we routinely archive and analyse flagging statistics for all scientific observations to monitor the observatory’s RFI environment in near real-time. We use the telescope itself as a very sensitive RFI monitor and directly assess the fraction of scientific observations impacted by RFI. To this end, flag tables are now automatically ingested and aggregated as part of routine ASKAP operations for all science observations, as a function of frequency and time. The data presented in this paper come from processing all archived data for several ASKAP Survey Science Projects (SSPs). We found that the average amount of flagging due to RFI across the routinely used ‘clean’ continuum science bands is 3%. The ‘clean’ mid band from 1 293 to 1 437 MHz (excluding the 144 MHz below 1293 MHz impacted by radionavigation-satellites which is discarded before processing) is the least affected by RFI, followed by the ‘clean’ low band from 742 to 1 085 MHz. ASKAP SSPs lose most of their data to the mobile service in the low band, aeronautical service in the mid band and satellite navigation service in the 1 510–1 797 MHz high band. We also show that for some of these services, the percentage of discarded data has been increasing year-on-year. SMART provides a unique opportunity to study ASKAP’s changing RFI environment, including understanding and updating the default flagging behaviour, inferring the suitability of and calibrating RFI monitoring equipment, monitoring spectrum management compliance in the Australian Radio Quiet Zone – Western Australia (ARQZWA), and informing the implementation of a suite of RFI mitigation techniques.
We present a demonstration version of a commensal pipeline for Fast Radio Burst (FRB) searches using a real-time incoherent beam from the Murchison Widefield Array (MWA). The main science target of the pipeline are bright nearby FRBs from the local Universe (including Galactic FRBs like from SGR 1935+2154) which are the best candidates to probe FRB progenitors and understand physical mechanisms powering these extremely energetic events. Recent FRB detections by LOFAR (down to 110 MHz), the Green Bank Telescope (at 350 MHz), and Canadian Hydrogen Intensity Mapping Experiment (CHIME) detections extending down to 400 MHz, prove that there is a population of FRBs that can be detected below 350 MHz. The new MWA beamformer, known as the ‘MWAX multibeam beamformer’, can form multiple incoherent and coherent beams (with different parameters) commensally to any ongoing MWA observations. One of the beams is currently used for FRB searches (tested in 10 kHz frequency resolution and time resolutions between 0.1 and 100 ms). A second beam (in 1 Hz and 1 s frequency and time resolutions, respectively) is used for the Search for Extraterrestrial Intelligence (SETI) project. This paper focuses on the FRB search pipeline and its verification on selected known bright pulsars. The pipeline uses the FREDDA implementation of the Fast Dispersion Measure Transform algorithm (FDMT) for single pulse searches. Initially, it was tested during standard MWA observations, and more recently using dedicated observations of a sample of 11 bright pulsars. The pulsar PSR J0835-4510 (Vela) has been routinely used as the primary probe of the data quality because its folded profile was always detected in the frequency band 200 – 230 MHz with typical signal-to-noise ratio $>$10, which agrees with the expectations. Similarly, the low dispersion measure pulsar PSR B0950+08 was always detected in folded profile in the frequency band 140–170 MHz and so far has been the only object for which single pulses were detected. We present the estimated sensitivity of the search in the currently limited observing bandwidth of a single MWA coarse channel (1.28 MHz) and for the upgraded, future system with 12.8 MHz (10 channels) of bandwidth. Based on expected sensitivity and existing FRB rate measurements, we project an FRB detection rate between a few and a few tens per year with large uncertainty due to unknown FRB rates at low frequencies.
The Maser Monitoring Parkes Project (M2P2) is an ongoing project to observe masers towards high-mass star-forming regions (HMSFRs) using the 64 m CSIRO Parkes radio telescope, Murriyang. In this paper, we outline the project and introduce Stokes-I data from the first two years of observations. For the 63 sightlines observed in this project we identify a total of 1 514 individual maser features: 14.4% of these (203) towards 27 sightlines show significant variability. Most of these (160/203) are seen in the main-line transitions of OH at 1665 and 1667 MHz, but this data set also includes a significant number of variable features in the satellite lines at 1 612 and 1 720 MHz (33 and 10, respectively), most of which (24 and 9, respectively) appear to be associated with the HMSFRs. We divide these features into 4 broad categories based on the behaviour of their intensity over time: flares (6%), periodic (11%), long-term trends (33%), and ‘other’ (50%). Variable masers provide a unique laboratory for the modelling of local environmental conditions of HMSFRs, and follow-up publications will delve into this in more detail.
New time series photometry of the pulsating hot subdwarf star ZTF J071329.02-152125.2 is presented. Rapid (timescale of hours) changes in the amplitude of the known pulsation in the star was observed. This could be ascribed to beating between three closely spaced frequencies, but analysis of all available photometry finds a range of different frequencies, with widely different amplitudes. A new frequency of 49.66 d$^{-1}$, suggestive of gravity-mode pulsation, was also discovered. The star may be a hybrid p-mode/g-mode hot subdwarf pulsator which sometimes exhibits extraordinarily large amplitude variability.
We demonstrate the importance of radio selection in probing heavily obscured galaxy populations. We combine Evolutionary Map of the Universe (EMU) Early Science data in the Galaxy and Mass Assembly (GAMA) G23 field with the GAMA data, providing optical photometry and spectral line measurements, together with Wide-field Infrared Survey Explorer (WISE) infrared (IR) photometry, providing IR luminosities and colours. We investigate the degree of obscuration in star-forming galaxies, based on the Balmer decrement (BD), and explore how this trend varies, over a redshift range of $0<z<0.345$. We demonstrate that the radio-detected population has on average higher levels of obscuration than the parent optical sample, arising through missing the lowest BD and lowest mass galaxies, which are also the lower star formation rate (SFR) and metallicity systems. We discuss possible explanations for this result, including speculation around whether it might arise from steeper stellar initial mass functions in low mass, low SFR galaxies.