Published online by Cambridge University Press: 27 February 2024
We model long-term magneto-rotational evolution of isolated neutron stars (INSs) with long initial spin periods. This analysis is motivated by the recent discovery of young long-period neutron stars (NSs) observed as periodic radio sources: PSR J0901-4046, GLEAM-X J1627-52, and GPM J1839-10. Our calculations demonstrate that for realistically rapid spin-down during the propeller stage INSs with velocities ${\lesssim}100$ km s
$^{-1}$ and assumed long initial spin periods can reach the stage of accretion from the interstellar medium within at most a few billion years as they are born already at the propeller stage or sufficiently close to the critical period of the ejector-propeller transition. If NSs with long initial spin periods form a relatively large fraction of all Galactic NSs then the number of isolated accretors is substantially larger than it has been predicted by previous studies.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.