To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the growth of the local $L^2$-norms of the unitary Eisenstein series for reductive groups over number fields, in terms of their parameters. We derive a poly-logarithmic bound on an average, for a large class of reductive groups. The method is based on Arthur’s development of the spectral side of the trace formula, and ideas of Finis, Lapid and Müller.
As applications of our method, we prove the optimal lifting property for $\mathrm {SL}_n(\mathbb {Z}/q\mathbb {Z})$ for square-free q, as well as the Sarnak–Xue [52] counting property for the principal congruence subgroup of $\mathrm {SL}_n(\mathbb {Z})$ of square-free level. This makes the recent results of Assing–Blomer [8] unconditional.
We formulate and prove the archimedean period relations for Rankin–Selberg convolutions for ${\mathrm {GL}}(n)\times {\mathrm {GL}}(n-1)$. As a consequence, we prove the period relations for critical values of the Rankin–Selberg L-functions for ${\mathrm {GL}}(n)\times {\mathrm {GL}}(n-1)$ over arbitrary number fields.
The loop space of a string manifold supports an infinite-dimensional Fock space bundle, which is an analog of the spinor bundle on a spin manifold. This spinor bundle on loop space appears in the description of two-dimensional sigma models as the bundle of states over the configuration space of the superstring. We construct a product on this bundle that covers the fusion of loops, i.e. the merging of two loops along a common segment. For this purpose, we exhibit it as a bundle of bimodules over a certain von Neumann algebra bundle, and realize our product fibrewise using the Connes fusion of von Neumann bimodules. Our main technique is to establish novel relations between string structures, loop fusion, and the Connes fusion of Fock spaces. The fusion product on the spinor bundle on loop space was proposed by Stolz and Teichner as part of a programme to explore the relation between generalized cohomology theories, functorial field theories, and index theory. It is related to the pair of pants worldsheet of the superstring, to the extension of the corresponding smooth functorial field theory down to the point, and to a higher-categorical bundle on the underlying string manifold, the stringor bundle.
In this paper, we investigate the twisted GGP conjecture for certain tempered representations using the theta correspondence and establish some special cases, namely when the L-parameter of the unitary group is the sum of conjugate-dual characters of the appropriate sign.
Given a smooth genus three curve C, the moduli space of rank two stable vector bundles on C with trivial determinant embeds in ${\mathbb {P}}^8$ as a hypersurface whose singular locus is the Kummer threefold of C; this hypersurface is the Coble quartic. Gruson, Sam and Weyman realized that this quartic could be constructed from a general skew-symmetric four-form in eight variables. Using the lines contained in the quartic, we prove that a similar construction allows to recover $\operatorname {\mathrm {SU}}_C(2,L)$, the moduli space of rank two stable vector bundles on C with fixed determinant of odd degree L, as a subvariety of $G(2,8)$. In fact, each point $p\in C$ defines a natural embedding of $\operatorname {\mathrm {SU}}_C(2,{\mathcal {O}}(p))$ in $G(2,8)$. We show that, for the generic such embedding, there exists a unique quadratic section of the Grassmannian which is singular exactly along the image of $\operatorname {\mathrm {SU}}_C(2,{\mathcal {O}}(p))$ and thus deserves to be coined the Coble quadric of the pointed curve $(C,p)$.
We introduce a new invariant, the conductor exponent, of a generic irreducible Casselman–Wallach representation of $\operatorname {\mathrm {GL}}_n(F)$, where F is an archimedean local field, that quantifies the extent to which this representation may be ramified. We also determine a distinguished vector, the newform, occurring with multiplicity one in this representation, with the complexity of this vector measured in a natural way by the conductor exponent. Finally, we show that the newform is a test vector for $\operatorname {\mathrm {GL}}_n \times \operatorname {\mathrm {GL}}_n$ and $\operatorname {\mathrm {GL}}_n \times \operatorname {\mathrm {GL}}_{n - 1}$ Rankin–Selberg integrals when the second representation is unramified. This theory parallels an analogous nonarchimedean theory due to Jacquet, Piatetski-Shapiro, and Shalika; combined, this completes a global theory of newforms for automorphic representations of $\operatorname {\mathrm {GL}}_n$ over number fields. By-products of the proofs include new proofs of Stade’s formulæ and a new resolution of the test vector problem for archimedean Godement–Jacquet zeta integrals.
We consider self-propelled rigid bodies interacting through local body-attitude alignment modelled by stochastic differential equations. We derive a hydrodynamic model of this system at large spatio-temporal scales and particle numbers in any dimension $n \geq 3$. This goal was already achieved in dimension $n=3$ or in any dimension $n \geq 3$ for a different system involving jump processes. However, the present work corresponds to huge conceptual and technical gaps compared with earlier ones. The key difficulty is to determine an auxiliary but essential object, the generalised collision invariant. We achieve this aim by using the geometrical structure of the rotation group, namely its maximal torus, Cartan subalgebra and Weyl group as well as other concepts of representation theory and Weyl’s integration formula. The resulting hydrodynamic model appears as a hyperbolic system whose coefficients depend on the generalised collision invariant.
Let $E/F$ be a quadratic unramified extension of non-archimedean local fields and $\mathbb H$ a simply connected semisimple algebraic group defined and split over F. We establish general results (multiplicities, test vectors) on ${\mathbb H} (F)$-distinguished Iwahori-spherical representations of ${\mathbb H} (E)$. For discrete series Iwahori-spherical representations of ${\mathbb H} (E)$, we prove a numerical criterion of ${\mathbb H} (F)$-distinction. As an application, we classify the ${\mathbb H} (F)$-distinguished discrete series representations of ${\mathbb H} (E)$ corresponding to degree $1$ characters of the Iwahori-Hecke algebra.
We apply Takesaki’s and Connes’s ideas on structure analysis for type III factors to the study of links (a short term of Markov kernels) appearing in asymptotic representation theory.
The aim of the present paper is to derive effective discrepancy estimates for the distribution of rational points on general semisimple algebraic group varieties, in general families of subsets and at arbitrarily small scales. We establish mean-square, almost sure and uniform estimates for the discrepancy with explicit error bounds. We also prove an analogue of W. Schmidt's theorem, which establishes effective almost sure asymptotic counting of rational solutions to Diophantine inequalities in the Euclidean space. We formulate and prove a version of it for rational points on the group variety, with an effective bound which in some instances can be expected to be the best possible.
In this paper we take up the classical sup-norm problem for automorphic forms and view it from a new angle. Given a twist minimal automorphic representation $\pi$ we consider a special small $\mathrm{GL}_2(\mathbb{Z}_p)$-type V in $\pi$ and prove global sup-norm bounds for an average over an orthonormal basis of V. We achieve a non-trivial saving when the dimension of V grows.
We study the Diophantine transference principle over function fields. By adapting the approach of Beresnevich and Velani [‘An inhomogeneous transference principle and Diophantine approximation’, Proc. Lond. Math. Soc. (3)101 (2010), 821–851] to function fields, we extend many results from homogeneous to inhomogeneous Diophantine approximation. This also yields the inhomogeneous Baker–Sprindžuk conjecture over function fields and upper bounds for the general nonextremal scenario.
Let $ G $ be a connected semisimple real algebraic group and $\Gamma <G$ be a Zariski dense discrete subgroup. Let N denote a maximal horospherical subgroup of G, and $P=MAN$ the minimal parabolic subgroup which is the normalizer of N. Let $\mathcal E$ denote the unique P-minimal subset of $\Gamma \backslash G$ and let $\mathcal E_0$ be a $P^\circ $-minimal subset. We consider a notion of a horospherical limit point in the Furstenberg boundary $ G/P $ and show that the following are equivalent for any $[g]\in \mathcal E_0$:
(1)$gP\in G/P$ is a horospherical limit point;
(2)$[g]NM$ is dense in $\mathcal E$;
(3)$[g]N$ is dense in $\mathcal E_0$.
The equivalence of items (1) and (2) is due to Dal’bo in the rank one case. We also show that unlike convex cocompact groups of rank one Lie groups, the $NM$-minimality of $\mathcal E$ does not hold in a general Anosov homogeneous space.
We give explicit presentations of the integral equivariant cohomology of the affine Grassmannians and flag varieties in type A, arising from their natural embeddings in the corresponding infinite (Sato) Grassmannian and flag variety. These presentations are compared with results obtained by Lam and Shimozono, for rational equivariant cohomology of the affine Grassmannian, and by Larson, for the integral cohomology of the moduli stack of vector bundles on .
Let $\Gamma =\langle I_{1}, I_{2}, I_{3}\rangle $ be the complex hyperbolic $(4,4,\infty )$ triangle group with $I_1I_3I_2I_3$ being unipotent. We show that the limit set of $\Gamma $ is connected and the closure of a countable union of $\mathbb {R}$-circles.
Quaternionic automorphic representations are one attempt to generalize to other groups the special place holomorphic modular forms have among automorphic representations of $\mathrm {GL}_2$. Here, we use ‘hyperendoscopy’ techniques to develop a general trace formula and understand them on an arbitrary group. Then we specialize this general formula to study quaternionic automorphic representations on the exceptional group $G_2$, eventually getting an analog of the Eichler–Selberg trace formula for classical modular forms. We finally use this together with some techniques of Chenevier, Renard and Taïbi to compute dimensions of spaces of level-$1$ quaternionic representations. On the way, we prove a Jacquet–Langlands-style result describing them in terms of classical modular forms and automorphic representations on the compact-at-infinity form $G_2^c$.
The main technical difficulty is that the quaternionic discrete series that quaternionic automorphic representations are defined in terms of do not satisfy a condition of being ‘regular’. A real representation theory argument shows that regularity miraculously does not matter for specifically the case of quaternionic discrete series.
We hope that the techniques and shortcuts highlighted in this project are of interest in other computations about discrete-at-infinity automorphic representations on arbitrary reductive groups instead of just classical ones.
We consider orthogonally invariant probability measures on $\operatorname {\mathrm {GL}}_n(\mathbb {R})$ and compare the mean of the logs of the moduli of eigenvalues of the matrices with the Lyapunov exponents of random matrix products independently drawn with respect to the measure. We give a lower bound for the former in terms of the latter. The results are motivated by Dedieu and Shub [On random and mean exponents for unitarily invariant probability measures on $\operatorname {\mathrm {GL}}_n(\mathbb {C})$. Astérisque287 (2003), xvii, 1–18]. A novel feature of our treatment is the use of the theory of spherical polynomials in the proof of our main result.
We construct pairs of residually finite groups with isomorphic profinite completions such that one has non-vanishing and the other has vanishing real second bounded cohomology. The examples are lattices in different higher-rank simple Lie groups. Using Galois cohomology, we actually show that $\operatorname {SO}^0(n,2)$ for $n \ge 6$ and the exceptional groups $E_{6(-14)}$ and $E_{7(-25)}$ constitute the complete list of higher-rank Lie groups admitting such examples.