We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Nonnegative directional splittings of anisotropic diffusion operators in the divergence form are investigated. Conditions are established for nonnegative directional splittings to hold in a neighborhood of an arbitrary interior point. The result is used to construct monotone finite difference schemes for the boundary value problem of anisotropic diffusion operators. It is shown that such a monotone scheme can be constructed if the underlying diffusion matrix is continuous on the closure of the physical domain and symmetric and uniformly positive definite on the domain, the mesh spacing is sufficiently small, and the size of finite difference stencil is sufficiently large. An upper bound for the stencil size is obtained, which is determined completely by the diffusion matrix. Loosely speaking, the more anisotropic the diffusion matrix is, the larger stencil is required. An exception is the situation with a strictly diagonally dominant diffusion matrix where a three-by-three stencil is sufficient for the construction of a monotone finite difference scheme. Numerical examples are presented to illustrate the theoretical findings.
An adaptive multi-penalty discontinuous Galerkin method (AMPDG) for the diffusion problem is considered. Convergence and quasi-optimality of the AMPDG are proved. Compared with the analyses for the adaptive finite element method or the adaptive interior penalty discontinuous Galerkin method, extra works are done to overcome the difficulties caused by the additional penalty terms.
In this paper, we propose an uniformly convergent adaptive finite element method with hybrid basis (AFEM-HB) for the discretization of singularly perturbed nonlinear eigenvalue problems under constraints with applications in Bose-Einstein condensation (BEC) and quantum chemistry. We begin with the time-independent Gross-Pitaevskii equation and show how to reformulate it into a singularly perturbed nonlinear eigenvalue problem under a constraint. Matched asymptotic approximations for the problem are reviewed to confirm the asymptotic behaviors of the solutions in the boundary/interior layer regions. By using the normalized gradient flow, we propose an adaptive finite element with hybrid basis to solve the singularly perturbed nonlinear eigenvalue problem. Our basis functions and the mesh are chosen adaptively to the small parameter ε. Extensive numerical results are reported to show the uniform convergence property of our method. We also apply the AFEM-HB to compute the ground and excited states of BEC with box/harmonic/optical lattice potential in the semiclassical regime (0 <ε≪C 1). In addition, we give a detailed error analysis of our AFEM-HB to a simpler singularly perturbed two point boundary value problem, show that our method has a minimum uniform convergence order
In this work, we develop an adaptive algorithm for solving elliptic optimal control problems with simultaneously appearing state and control constraints. The algorithm combines a Moreau-Yosida technique for handling state constraints with a semi-smooth Newton method for solving the optimality systems of the regularized sub-problems. The state and adjoint variables are discretized using continuous piecewise linear finite elements while a variational discretization concept is applied for the control. To perform the adaptive mesh refinements cycle we derive local error estimators which extend the goal-oriented error approach to our setting. The performance of the overall adaptive solver is assessed by numerical examples.
In this paper, we study a new stabilized method based on the local pressure projection to solve the semi-linear elliptic equation. The proposed scheme combines nonconforming finite element pairs NCP1–P1 triangle element and two-level method, which has a number of attractive computational properties: parameter-free, avoiding higher-order derivatives or edge-based data structures, but have more favorable stability and less support sets. Stability analysis and error estimates have been done. Finally, numerical experiments to check estimates are presented.
Two-grid finite element methods for the steady Navier-Stokes/Darcy model are considered. Stability and optimal error estimates in the H1-norm for velocity and piezometric approximations and the L2-norm for pressure are established under mesh sizes satisfying h = H2. A modified decoupled and linearised two-grid algorithm is developed, together with some associated optimal error estimates. Our method and results extend and improve an earlier investigation, and some numerical computations illustrate the efficiency and effectiveness of the new algorithm.
This paper derives a higher order hybrid stress finite element method on quadrilateral meshes for linear plane elasticity problems. The method employs continuous piecewise bi-quadratic functions in local coordinates to approximate the displacement vector and a piecewise-independent 15-parameter mode to approximate the stress tensor. Error estimation shows that the method is free from Poisson-locking and has second-order accuracy in the energy norm. Numerical experiments confirm the theoretical results.
The control of convective heat transfer from a heated circular cylinder immersed in an electrically conducting fluid is achieved using an externally imposed magnetic field. A Higher Order Compact Scheme (HOCS) is used to solve the governing energy equation in cylindrical polar coordinates. The HOCS gives fourth order accurate results for the temperature field. The behavior of local Nusselt number, mean Nusselt number and temperature field due to variation in the aligned magnetic field is evaluated for the parameters 5≤Re≤40, 0≤N≤20 and 0.065≤Pr≤7. It is found that the convective heat transfer is suppressed by increasing the strength of the imposed magnetic field until a critical value of N, the interaction parameter, beyond which the heat transfer increases with further increase in N. The results are found to be in good agreement with recent experimental studies.
Aerosol modeling is very important to study the behavior of aerosol dynamics in atmospheric environment. In this paper we consider numerical methods for the nonlinear aerosol dynamic equations on time and particle size. The finite volume element methods based on the linear interpolation and Hermite interpolation are provided to approximate the aerosol dynamic equation where the condensation and removal processes are considered. Numerical examples are provided to show the efficiency of these numerical methods.
In this paper, we introduce and study a new method for solving inverse source problems, through a working model that arises in bioluminescence tomography (BLT). In the BLT problem, one constructs quantitatively the bioluminescence source distribution inside a small animal from optical signals detected on the animal's body surface. The BLT problem possesses strong ill-posedness and often the Tikhonov regularization is used to obtain stable approximate solutions. In conventional Tikhonov regularization, it is crucial to choose a proper regularization parameter for trade off between the accuracy and stability of approximate solutions. The new method is based on a combination of the boundary condition and the boundary measurement in a parameter-dependent single complex Robin boundary condition, followed by the Tikhonov regularization. By properly adjusting the parameter in the Robin boundary condition, we achieve two important properties for our new method: first, the regularized solutions are uniformly stable with respect to the regularization parameter so that the regularization parameter can be chosen based solely on the consideration of the solution accuracy; second, the convergence order of the regularized solutions reaches one with respect to the noise level. Then, the finite element method is used to compute numerical solutions and a new finite element error estimate is derived for discrete solutions. These results improve related results found in the existing literature. Several numerical examples are provided to illustrate the theoretical results.
Numerical oscillation of the total energy can be observed when the Kohn- Sham equation is solved by real-space methods to simulate the translational move of an electronic system. Effectively remove or reduce the unphysical oscillation is crucial not only for the optimization of the geometry of the electronic structure, but also for the study of molecular dynamics. In this paper, we study such unphysical oscillation based on the numerical framework in [G. Bao, G. H. Hu, and D. Liu, An h-adaptive finite element solver for the calculations of the electronic structures, Journal of Computational Physics, Volume 231, Issue 14, Pages 4967–4979, 2012], and deliver some numerical methods to constrain such unphysical effect for both pseudopotential and all-electron calculations, including a stabilized cubature strategy for Hamiltonian operator, and an a posteriori error estimator of the finite element methods for Kohn-Sham equation. The numerical results demonstrate the effectiveness of our method on restraining unphysical oscillation of the total energies.
In this paper we consider PDE-constrained optimization problems which incorporate an H1 regularization control term. We focus on a time-dependent PDE, and consider both distributed and boundary control. The problems we consider include bound constraints on the state, and we use a Moreau-Yosida penalty function to handle this. We propose Krylov solvers and Schur complement preconditioning strategies for the different problems and illustrate their performance with numerical examples.
In this paper, we study the Camassa-Holm equation and the Degasperis-Procesi equation. The two equations are in the family of integrable peakon equations, and both have very rich geometric properties. Based on these geometric structures, we construct the geometric numerical integrators for simulating their soliton solutions. The Camassa-Holm equation and the Degasperis-Procesi equation have many common properties, however they also have the significant difference, for example there exist the shock wave solutions for the Degasperis-Procesi equation. By using the symplectic Fourier pseudo-spectral integrator, we simulate the peakon solutions of the two equations. To illustrate the smooth solitons and shock wave solutions of the DP equation, we use the splitting technique and combine the composition methods. In the numerical experiments, comparisons of these two kinds of methods are presented in terms of accuracy, computational cost and invariants preservation.
An efficient and accurate numerical scheme is proposed for solving the transverse electric (TE) mode electromagnetic (EM) propagation problem in two-dimensional earth. The scheme is based on the alternating direction finite-difference time-domain (ADI-FDTD) method. Unlike the conventional upward continuation approach for the earth-air interface, an integral formulation for the interface boundary is developed and it is effectively incorporated to the ADI solver. Stability and convergence analysis together with an error estimate are presented. Numerical simulations are carried out to validate the proposed method, and the advantage of the present method over the popular Du-Fort-Frankel scheme is clearly demonstrated. Examples of the electromagnetic field propagation in the ground with anomaly further verify the effectiveness of the proposed scheme.
The paper aims to develop an effective preconditioner and conduct the convergence analysis of the corresponding preconditioned GMRES for the solution of discrete problems originating from multi-group radiation diffusion equations. We firstly investigate the performances of the most widely used preconditioners (ILU(k) and AMG) and their combinations (Bco and Bco), and provide drawbacks on their feasibilities. Secondly, we reveal the underlying complementarity of ILU(k) and AMG by analyzing the features suitable for AMG using more detailed measurements on multiscale nature of matrices and the effect of ILU(k) on multiscale nature. Moreover, we present an adaptive combined preconditioner Bcoα involving an improved ILU(0) along with its convergence constraints. Numerical results demonstrate that Bcoα-GMRES holds the best robustness and efficiency. At last, we analyze the convergence of GMRES with combined preconditioning which not only provides a persuasive support for our proposed algorithms, but also updates the existing estimation theory on condition numbers of combined preconditioned systems.
A weakly over-penalized symmetric interior penalty method is applied to solve elliptic eigenvalue problems. We derive a posteriori error estimator of residual type, which proves to be both reliable and efficient in the energy norm. Some numerical tests are provided to confirm our theoretical analysis.
This paper proposes and analyzes semi-discrete and fully discrete hybrid stress finite element methods for elastodynamic problems. A hybrid stress quadrilateral finite element approximation is used in the space directions. A second-order center difference is adopted in the time direction for the fully discrete scheme. Error estimates of the two schemes, as well as a stability result for the fully discrete scheme, are derived. Numerical experiments are done to verify the theoretical results.
For any given matrix A ∈ℂnxn, a preconditioner tU(A) called thesuperoptimal preconditioner was proposed in 1992 by Tyrtyshnikov. It has beenshown that tU(A) is an efficient preconditioner forsolving various structured systems, for instance, Toeplitz-like systems. In thispaper, we construct the superoptimal preconditioners for different functions ofmatrices. Let f be a function of matrices from ℂnxn to ℂnxn. For any A ∈ ℂ nxn, one may construct two superoptimal preconditioners for f(A):tU(f(A)) and f(tU(A)).We establish basic properties of tU(f(A)) andf(tU(A)) for different functions ofmatrices. Some numerical tests demonstrate that the proposed preconditioners arevery efficient for solving the system f(A)x = b.
In this paper we present a fully discrete A-ø finite element method to solve Maxwell’sequations with a nonlinear degenerate boundary condition, which represents ageneralization of the classical Silver-Müller condition for anon-perfect conductor. The relationship between the normal components of theelectric field E and the magnetic field H obeys a power-law nonlinearity of the type H x n = n x (|E x n|α-1E x n) with α ∈ (0,1]. We prove the existence anduniqueness of the solutions of the proposed A-ø scheme and derive the error estimates. Finally, wepresent some numerical experiments to verify the theoretical result.
In this paper, we propose a numerical method for solving the heat equations withinterfaces. This method uses the non-traditional finite element method togetherwith finite difference method to get solutions with second-order accuracy. It iscapable of dealing with matrix coefficient involving time, and the interfacesunder consideration are sharp-edged interfaces instead of smooth interfaces.Modified Euler Method is employed to ensure the accuracy in time. More than1.5th order accuracy is observed for solution with singularity (secondderivative blows up) on the sharp-edged interface corner. Extensive numericalexperiments illustrate the feasibility of the method.