We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper describes an application of the recently developed sparse scheme of the method of fundamental solutions (MFS) for the simulation of three-dimensional modified Helmholtz problems. The solution to the given problems is approximated by a two-step strategy which consists of evaluating the particular solution and the homogeneous solution. The homogeneous solution is approximated by the traditional MFS. The original dense system of the MFS formulation is condensed into a sparse system based on the exponential decay of the fundamental solutions. Hence, the homogeneous solution can be efficiently obtained. The method of particular solutions with polyharmonic spline radial basis functions and the localized method of approximate particular solutions in combination with the Gaussian radial basis function are employed to approximate the particular solution. Three numerical examples including a near singular problem are presented to show the simplicity and effectiveness of this approach.
The differential capacitance of electric double-layer capacitors is studied by developing a generalized model of the self-consistent Gaussian field theory. This model includes many-body effects of particles near the interface such as ionic sizes, the order of water alignment and electrostatic correlations, and thus can present more accurate predictions of the electric double-layer structure and hence the capacitance than traditional continuum theories. Analytical simplification of the model and efficient numerical method are introduced, in particular, the approximation of the self-Green's function which describes the self energy of a mobile ion. We show that, when the applied voltage on interfaces is small the dielectric effect of the electrode materials plays an important role. For large voltage, this effect is screened, but the dielectric saturation due to the alignment of the nearby water is shown to be essential. For 2:1 electrolytes, abnormal enhancement on the capacitance due to the dielectric electrode is observed, which is due to the interplay of the image charge effect and Born solvation energy in the self energy of ions.
Two-dimensional three-temperature (2-D 3-T) radiation diffusion equations are widely used to approximately describe the evolution of radiation energy within a multi-material system and explain the exchange of energy among electrons, ions and photons. Their highly nonlinear, strong discontinuous and tightly coupled phenomena always make the numerical solution of such equations extremely challenging. In this paper, we construct two finite volume element schemes both satisfying the discrete conservation property. One of them can well preserve the positivity of analytical solutions, while the other one does not satisfy this property. To fix this defect, two as repair techniques are designed. In addition, as the numerical simulation of 2-D 3-T equations is very time consuming, we also devise a mesh adaptation algorithm to reduce the cost. Numerical results show that these new methods are practical and efficient in solving this kind of problems.
In this paper, we consider a least squares nonconforming finite element of low order for solving the transport equations. We give a detailed overview on the stability and the convergence properties of our considered methods in the stability norm. Moreover, we derive residual type a posteriori error estimates for the least squares nonconforming finite element methods under H–1-norm, which can be used as the error indicators to guide the mesh refinement procedure in the adaptive finite element method. The theoretical results are supported by a series of numerical experiments.
A counterexample is constructed. It confirms that the error of conforming finite element solution is proportional to the coefficient jump, when solving interface elliptic equations. The Scott-Zhang operator is applied to a nonconforming finite element. It is shown that the nonconforming finite element provides the optimal order approximation in interpolation, in L2-projection, and in solving elliptic differential equation, independent of the coefficient jump in the elliptic differential equation. Numerical tests confirm the theoretical finding.
We present an efficient and robust method for stress wave propagation problems (second order hyperbolic systems) having discontinuities directly in their second order form. Due to the numerical dispersion around discontinuities and lack of the inherent dissipation in hyperbolic systems, proper simulation of such problems are challenging. The proposed idea is to denoise spurious oscillations by a post-processing stage from solutions obtained from higher-order grid-based methods (e.g., high-order collocation or finite-difference schemes). The denoising is done so that the solutions remain higher-order (here, second order) around discontinuities and are still free from spurious oscillations. For this purpose, improved Tikhonov regularization approach is advised. This means to let data themselves select proper denoised solutions (since there is no pre-assumptions about regularized results). The improved approach can directly be done on uniform or non-uniform sampled data in a way that the regularized results maintenance continuous derivatives up to some desired order. It is shown how to improve the smoothing method so that it remains conservative and has local estimating feature. To confirm effectiveness of the proposed approach, finally, some one and two dimensional examples will be provided. It will be shown how both the numerical (artificial) dispersion and dissipation can be controlled around discontinuous solutions and stochastic-like results.
This paper is devoted to a unified a priori and a posteriori error analysis of CIP-FEM (continuous interior penalty finite element method) for second-order elliptic problems. Compared with the classic a priori error analysis in literature, our technique can easily apply for any type regularity assumption on the exact solution, especially for the case of lower H1+s weak regularity under consideration, where 0 ≤ s ≤ 1/2. Because of the penalty term used in the CIP-FEM, Galerkin orthogonality is lost and Céa Lemma for conforming finite element methods can not be applied immediately when 0≤s≤1/2. To overcome this difficulty, our main idea is introducing an auxiliary C1 finite element space in the analysis of the penalty term. The same tool is also utilized in the explicit a posteriori error analysis of CIP-FEM.
It is known that large time-stepping method are useful for simulating phase field models. In this work, an adaptive time-stepping strategy is proposed based on numerical energy stability and equi-distribution principle. The main idea is to use the energy variation as an indicator to update the time step, so that the resulting algorithm is free of user-defined parameters, which is different from several existing approaches. Some numerical experiments are presented to illustrate the effectiveness of the algorithms.
Various numerical methods have been developed in order to solve complex systems with uncertainties, and the stochastic collocation method using l1-minimisation on low discrepancy point sets is investigated here. Halton and Sobol' sequences are considered, and low discrepancy point sets and random points are compared. The tests discussed involve a given target function in polynomial form, high-dimensional functions and a random ODE model. Our numerical results show that the low discrepancy point sets perform as well or better than random sampling for stochastic collocation via l1-minimisation.
In this paper, we propose a novel and simple technique to construct effective difference schemes for solving systems of singularly perturbed convection-diffusion-reaction equations, whose solutions may display boundary or interior layers. We illustrate the technique by taking the Il'in-Allen-Southwell scheme for 1-D scalar equations as a basis to derive a formally second-order scheme for 1-D coupled systems and then extend the scheme to 2-D case by employing an alternating direction approach. Numerical examples are given to demonstrate the high performance of the obtained scheme on uniform meshes as well as piecewise-uniform Shishkin meshes.
The Brinkman model describes flow of fluid in complex porous media with a high-contrast permeability coefficient such that the flow is dominated by Darcy in some regions and by Stokes in others. A weak Galerkin (WG) finite element method for solving the Brinkman equations in two or three dimensional spaces by using polynomials is developed and analyzed. The WG method is designed by using the generalized functions and their weak derivatives which are defined as generalized distributions. The variational form we considered in this paper is based on two gradient operators which is different from the usual gradient-divergence operators for Brinkman equations. The WG method is highly flexible by allowing the use of discontinuous functions on arbitrary polygons or polyhedra with certain shape regularity. Optimal-order error estimates are established for the corresponding WG finite element solutions in various norms. Some computational results are presented to demonstrate the robustness, reliability, accuracy, and flexibility of the WG method for the Brinkman equations.
We present a high-order upwind finite volume element method to solve optimal control problems governed by first-order hyperbolic equations. The method is efficient and easy for implementation. Both the semi-discrete error estimates and the fully discrete error estimates are derived. Optimal order error estimates in the sense of $L^{2}$-norm are obtained. Numerical examples are provided to confirm the effectiveness of the method and the theoretical results.
We study pseudo-arclength continuation methods for both Rydberg-dressed Bose-Einstein condensates (BEC), and binary Rydberg-dressed BEC which are governed by the Gross-Pitaevskii equations (GPEs). A divide-and-conquer technique is proposed for rescaling the range/ranges of nonlocal nonlinear term/terms, which gives enough information for choosing a proper stepsize. This guarantees that the solution curve we wish to trace can be precisely approximated. In addition, the ground state solution would successfully evolve from one peak to vortices when the affect of the rotating term is imposed. Moreover, parameter variables with different number of components are exploited in curve-tracing. The proposed methods have the advantage of tracing the ground state solution curve once to compute the contours for various values of the coefficients of the nonlocal nonlinear term/terms. Our numerical results are consistent with those published in the literatures.
Mesh generation is a bottleneck for finite element simulations of biomolecules. A robust and efficient approach, based on the immersed boundary method proposed in [8], has been developed and implemented to generate large-scale mesh body-fitted to molecular shape for general parallel finite element simulations. The molecular Gaussian surface is adopted to represent the molecular surface, and is finally approximated by piecewise planes via the tool phgSurfaceCut in PHG [43], which is improved and can reliably handle complicated molecular surfaces, through mesh refinement steps. A coarse background mesh is imported first and then is distributed into each process using a mesh partitioning algorithm such as space filling curve [5] or METIS [22]. A bisection method is used for the mesh refinements according to the molecular PDB or PQR file which describes the biomolecular region. After mesh refinements, the mesh is optionally repartitioned and redistributed for load balancing. For finite element simulations, the modification of region mark and boundary types is done in parallel. Our parallel mesh generation method has been successfully applied to a sphere cavity model, a DNA fragment, a gramicidin A channel and a huge Dengue virus system. The results of numerical experiments show good parallel efficiency. Computations of electrostatic potential and solvation energy also validate the method. Moreover, the meshing process and adaptive finite element computation can be integrated as one PHG project to avoid the mesh importing and exporting costs, and improve the convenience of application as well.
A multigrid method is proposed to compute the ground state solution of Bose-Einstein condensations by the finite element method based on the multilevel correction for eigenvalue problems and the multigrid method for linear boundary value problems. In this scheme, obtaining the optimal approximation for the ground state solution of Bose-Einstein condensates includes a sequence of solutions of the linear boundary value problems by the multigrid method on the multilevel meshes and some solutions of nonlinear eigenvalue problems some very low dimensional finite element space. The total computational work of this scheme can reach almost the same optimal order as solving the corresponding linear boundary value problem. Therefore, this type of multigrid scheme can improve the overall efficiency for the simulation of Bose-Einstein condensations. Some numerical experiments are provided to validate the efficiency of the proposed method.
In order to solve the partial differential equations that arise in the Hartree- Fock theory for diatomicmolecules and inmolecular theories that include electron correlation, one needs efficient methods for solving partial differential equations. In this article, we present numerical results for a two-variablemodel problem of the kind that arises when one solves the Hartree-Fock equations for a diatomic molecule. We compare results obtained using the spline collocation and domain decomposition methods with third-order Hermite splines to results obtained using the more-established finite difference approximation and the successive over-relaxation method. The theory of domain decomposition presented earlier is extended to treat regions that are divided into an arbitrary number of subregions by families of lines parallel to the two coordinate axes. While the domain decomposition method and the finite difference approach both yield results at the micro-Hartree level, the finite difference approach with a 9- point difference formula produces the same level of accuracy with fewer points. The domain decompositionmethod has the strength that it can be applied to problemswith a large number of grid points. The time required to solve a partial differential equation for a fine grid with a large number of points goes down as the number of partitions increases. The reason for this is that the length of time necessary for solving a set of linear equations in each subregion is very much dependent upon the number of equations. Even though a finer partition of the region has more subregions, the time for solving the set of linear equations in each subregion is very much smaller. This feature of the theory may well prove to be a decisive factor for solving the two-electron pair equation, which – for a diatomic molecule – involves solving partial differential equations with five independent variables. The domain decomposition theory also makes it possible to study complex molecules by dividing them into smaller fragments that are calculated independently. Since the domain decomposition approachmakes it possible to decompose the variable space into separate regions in which the equations are solved independently, this approach is well-suited to parallel computing.
The maximal return and optimal leverage of a constant proportion debt obligation with finite termination and two boundaries are analysed by numerically solving Hamilton–Jacobi–Bellman equations. We discuss the probabilities of the asset value reaching the upper or lower bound under the optimal control and the optimal control problem with a time-varying boundary. Furthermore, we also analyse the relationship between the optimal return, the optimal policy and different parameters.
A uniaxial perfectly matched layer (PML) method is proposed for solving the scattering problem with multiple cavities. By virtue of the integral representation of the scattering field, we decompose the problem into a system of single-cavity scattering problems which are coupled with Dirichlet-to-Neumann maps. A PML is introduced to truncate the exterior domain of each cavity such that the computational domain does not intersect those for other cavities. Based on the a posteriori error estimates, an adaptive finite element algorithm is proposed to solve the coupled system. The novelty of the proposed method is that its computational complexity is comparable to that for solving uncoupled single-cavity problems. Numerical experiments are presented to demonstrate the efficiency of the adaptive PML method.
This paper concerns numerical computation of a fourth order eigenvalue problem. We first show the well-posedness of the source problem. An interior penalty discontinuous Galerkin method (C0IPG) using Lagrange elements is proposed and its convergence is studied. The method is then used to compute the eigenvalues. We show that the method is spectrally correct and prove the optimal convergence. Numerical examples are presented to validate the theory.