We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We describe the period structure of the optimal continued fraction expansion of a quadratic surd, in terms of the period of its nearest square continued fraction expansion. The analysis results in a faster algorithm for determining the optimal continued fraction expansion of a quadratic surd.
We investigate the behaviour of the function $L_{\alpha }(x) = \sum _{n\leq x}\lambda (n)/n^{\alpha }$, where $\lambda (n)$ is the Liouville function and $\alpha $ is a real parameter. The case where $\alpha =0$ was investigated by Pólya; the case $\alpha =1$, by Turán. The question of the existence of sign changes in both of these cases is related to the Riemann hypothesis. Using both analytic and computational methods, we investigate similar problems for the more general family $L_{\alpha }(x)$, where $0\leq \alpha \leq 1$, and their relationship to the Riemann hypothesis and other properties of the zeros of the Riemann zeta function. The case where $\alpha =1/2$is of particular interest.
Given an elliptic curve E over a field of positive characteristic p, we consider how to efficiently determine whether E is ordinary or supersingular. We analyze the complexity of several existing algorithms and then present a new approach that exploits structural differences between ordinary and supersingular isogeny graphs. This yields a simple algorithm that, given E and a suitable non-residue in 𝔽p2, determines the supersingularity of E in O(n3log 2n) time and O(n) space, where n=O(log p) . Both these complexity bounds are significant improvements over existing methods, as we demonstrate with some practical computations.
From power series expansions of functions on curves over finite fields, one can obtain sequences with perfect or almost perfect linear complexity profile. It has been suggested by various authors to use such sequences as key streams for stream ciphers. In this work, we show how long parts of such sequences can be computed efficiently from short ones. Such sequences should therefore be considered to be cryptographically weak. Our attack leads in a natural way to a new measure of the complexity of sequences which we call expansion complexity.
Given a prime q and a negative discriminant D, the CM method constructs an elliptic curve E/Fq by obtaining a root of the Hilbert class polynomial HD(X) modulo q. We consider an approach based on a decomposition of the ring class field defined by HD, which we adapt to a CRT setting. This yields two algorithms, each of which obtains a root of HD mod q without necessarily computing any of its coefficients. Heuristically, our approach uses asymptotically less time and space than the standard CM method for almost all D. Under the GRH, and reasonable assumptions about the size of log q relative to ∣D∣, we achieve a space complexity of O((m+n)log q) bits, where mn=h(D) , which may be as small as O(∣D∣1/4 log q) . The practical efficiency of the algorithms is demonstrated using ∣D∣>1016 and q≈2256, and also ∣D∣>1015 and q≈233220. These examples are both an order of magnitude larger than the best previous results obtained with the CM method.
Brizolis asked for which primes p greater than 3 there exists a pair (g,h) such that h is a fixed point of the discrete exponential map with base g, or equivalently h is a fixed point of the discrete logarithm with base g. Various authors have contributed to the understanding of this problem. In this paper, we use p-adic methods, primarily Hensel’s lemma and p-adic interpolation, to count fixed points, two-cycles, collisions, and solutions to related equations modulo powers of a prime p.
In 1987, Gordon gave an integer primality condition similar to the familiar test based on Fermat’s little theorem, but based instead on the arithmetic of elliptic curves with complex multiplication. We prove the existence of infinitely many composite numbers simultaneously passing all elliptic curve primality tests assuming a weak form of a standard conjecture on the bound on the least prime in (special) arithmetic progressions. Our results are somewhat more general than both the 1999 dissertation of the first author (written under the direction of the third author) and a 2010 paper on Carmichael numbers in a residue class written by Banks and the second author.
We construct six infinite series of families of pairs of curves (X,Y ) of arbitrarily high genus, defined over number fields, together with an explicit isogeny from the Jacobian of X to the Jacobian of Y splitting multiplication by 2, 3 or 4. For each family, we compute the isomorphism type of the isogeny kernel and the dimension of the image of the family in the appropriate moduli space. The families are derived from Cassou-Noguès and Couveignes’ explicit classification of pairs (f,g) of polynomials such that f(x1)−g(x2) is reducible.
We present p-adic algorithms for computing Hecke polynomials and Hecke eigenforms associated to spaces of classical modular forms, using the theory of overconvergent modular forms. The algorithms have a running time which grows linearly with the logarithm of the weight and are well suited to investigating the dimension variation of certain p-adically defined spaces of classical modular forms.
We develop a new p-adic algorithm to compute the minimal polynomial of a class invariant. Our approach works for virtually any modular function yielding class invariants. The main algorithmic tool is modular polynomials, a concept which we generalize to functions of higher level.
Let α be a totally positive algebraic integer of degree d≥2 and α1=α,α2,…,αd be all its conjugates. We use explicit auxiliary functions to improve the known lower bounds of Sk/d, where Sk=∑ di=1αki and k=1,2,3. These improvements have consequences for the search of Salem numbers with negative traces.
For p=3 and p=5, we exhibit a finite nonsolvable extension of ℚ which is ramified only at p, proving in the affirmative a conjecture of Gross. Our construction involves explicit computations with Hilbert modular forms.
We introduce a ‘limiting Frobenius structure’ attached to any degeneration of projective varieties over a finite field of characteristic p which satisfies a p-adic lifting assumption. Our limiting Frobenius structure is shown to be effectively computable in an appropriate sense for a degeneration of projective hypersurfaces. We conjecture that the limiting Frobenius structure relates to the rigid cohomology of a semistable limit of the degeneration through an analogue of the Clemens–Schmidt exact sequence. Our construction is illustrated, and conjecture supported, by a selection of explicit examples.
We state and verify up to weight 172 a conjecture on the existence of a certain generating set for spaces of classical Siegel modular forms. This conjecture is particularly useful for calculations involving Fourier expansions. Using this generating set, we verify the Böcherer conjecture for nonrational eigenforms and discriminants with class number greater than one. As a further application we verify another conjecture for weights up to 150 and investigate an analog of the Victor–Miller basis. Additionally, we describe some arithmetic properties of the basis we found.
We study the elliptic curve discrete logarithm problem over finite extension fields. We show that for any sequences of prime powers (qi)i∈ℕ and natural numbers (ni)i∈ℕ with ni⟶∞ and ni/log (qi)⟶0 for i⟶∞, the elliptic curve discrete logarithm problem restricted to curves over the fields 𝔽qnii can be solved in subexponential expected time (qnii)o(1). We also show that there exists a sequence of prime powers (qi)i∈ℕ such that the problem restricted to curves over 𝔽qi can be solved in an expected time of e𝒪(log (qi)2/3).
The four colour theorem states that the vertices of every planar graph can be coloured with at most four colours so that no two adjacent vertices receive the same colour. This theorem is famous for many reasons, including the fact that its original 1977 proof includes a non-trivial computer verification. Recently, a formal proof of the theorem was obtained with the equational logic program Coq [G. Gonthier, ‘Formal proof–the four color theorem’, Notices of Amer. Math. Soc. 55 (2008) no. 11, 1382–1393]. In this paper we describe an implementation of the computational method introduced by C. S. Calude and co-workers [Evaluating the complexity of mathematical problems. Part 1’, Complex Systems 18 (2009) 267–285; A new measure of the difficulty of problems’, J. Mult. Valued Logic Soft Comput. 12 (2006) 285–307] to evaluate the complexity of the four colour theorem. Our method uses a Diophantine equational representation of the theorem. We show that the four colour theorem is in the complexity class ℭU,4. For comparison, the Riemann hypothesis is in class ℭU,3 while Fermat’s last theorem is in class ℭU,1.
We discuss the Mordell–Weil sieve as a general technique for proving results concerning rational points on a given curve. In the special case of curves of genus 2, we describe quite explicitly how the relevant local information can be obtained if one does not want to restrict to mod p information at primes of good reduction. We describe our implementation of the Mordell–Weil sieve algorithm and discuss its efficiency.
Assuming a conjecture intermediate in strength between one of Chowla and one of Heath-Brown on the least prime in a residue class, we show that for any coprime integers a and m≥1, there are infinitely many Carmichael numbers in the arithmetic progression a mod m.
In this paper, we introduce cell-forms on 𝔐0,n, which are top-dimensional differential forms diverging along the boundary of exactly one cell (connected component) of the real moduli space 𝔐0,n(ℝ). We show that the cell-forms generate the top-dimensional cohomology group of 𝔐0,n, so that there is a natural duality between cells and cell-forms. In the heart of the paper, we determine an explicit basis for the subspace of differential forms which converge along a given cell X. The elements of this basis are called insertion forms; their integrals over X are real numbers, called cell-zeta values, which generate a ℚ-algebra called the cell-zeta algebra. By a result of F. Brown, the cell-zeta algebra is equal to the algebra of multizeta values. The cell-zeta values satisfy a family of simple quadratic relations coming from the geometry of moduli spaces, which leads to a natural definition of a formal version of the cell-zeta algebra, conjecturally isomorphic to the formal multizeta algebra defined by the much-studied double shuffle relations.
Browkin [‘Some new kinds of pseudoprimes’, Math. Comp.73 (2004), 1031–1037] gave examples of strong pseudoprimes to many bases which are not Sylow p-pseudoprimes to two bases only, where p=2 or 3. In contrast to Browkin’s examples, Zhang [‘Notes on some new kinds of pseudoprimes’, Math. Comp.75 (2006), 451–460] gave facts and examples which are unfavorable for Browkin’s observation on detecting compositeness of odd composite numbers. In particular, Zhang gave a Sylowp-pseudoprime (with 27 decimal digits) to the first 6 prime bases for all the first 6 primes p, and conjectured that for any k≥1, there would exist Sylow p-pseudoprimes to the first k prime bases for all the first k primes p. In this paper we tabulate 27 Sylow p-pseudoprimes less than 1036 to the first 7 prime bases for all the first 7 primes p (two of which are Sylow p-pseudoprimes to the first 7 prime bases for all the first 8 primes p). We describe the procedure for finding these numbers. The main tools used in our method are the cubic residue characters and the Chinese remainder theorem.