To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we solved an open problem raised by Cecil and Ryan (2015, Geometry of Hypersurfaces, Springer Monographs in Mathematics, Springer, New York, p. 531) by proving the nonexistence of non-Hopf Ricci-semisymmetric real hypersurfaces in $\mathbb {C}P^{2}$ and $\mathbb {C}H^{2}$.
This note is motivated by recent studies by Eriksson-Bique and Soultanis about the construction of charts in general metric measure spaces. We analyze their construction and provide an alternative and simpler proof of the fact that these charts exist on sets of finite Hausdorff dimension. The observation made here offers also some simplification about the study of the relation between the reference measure and the charts in the setting of $\text {RCD}$ spaces.
Let $(M, F, m)$ be a forward complete Finsler measure space. In this paper, we prove that any nonnegative global subsolution in $L^p(M)(p>1)$ to the heat equation on $\mathbb R^+\times M$ is uniquely determined by the initial data. Moreover, we give an $L^p(0<p\leq 1)$ Liouville-type theorem for nonnegative subsolutions u to the heat equation on $\mathbb R\times M$ by establishing the local $L^p$ mean value inequality for u on M with Ric$_N\geq -K(K\geq 0)$.
We formalize the concepts of holomorphic affine and projective structures along the leaves of holomorphic foliations by curves on complex manifolds. We show that many foliations admit such structures, we provide local normal forms for them at singular points of the foliation, and we prove some index formulae in the case where the ambient manifold is compact. As a consequence of these, we establish that a regular foliation of general type on a compact algebraic manifold of even dimension does not admit a foliated projective structure. Finally, we classify foliated affine and projective structures along regular foliations on compact complex surfaces.
It is a longstanding conjecture that given a subset E of a metric space, if E has unit $\mathscr {H}^{\alpha }\llcorner E$-density almost everywhere, then E is an $\alpha $-rectifiable set. We prove this conjecture under the assumption that the ambient metric space is a homogeneous group with a smooth-box norm.
The total mean curvature functional for submanifolds into the Riemannian product space $\mathbb{S}^n\times\mathbb{R}$ is considered and its first variational formula is presented. Later on, two second-order differential operators are defined and a nice integral inequality relating both of them is proved. Finally, we prove our main result: an integral inequality for closed stationary $\mathcal{H}$-surfaces in $\mathbb{S}^n\times\mathbb{R}$, characterizing the cases where the equality is attained.
In this paper, we obtain one sharp estimate for the length $L(\partial\Sigma)$ of the boundary $\partial\Sigma$ of a capillary minimal surface Σ2 in M3, where M is a compact three-manifolds with strictly convex boundary, assuming Σ has index one. The estimate is in term of the genus of Σ, the number of connected components of $\partial\Sigma$ and the constant contact angle θ. Making an extra assumption on the geometry of M along $\partial M$, we characterize the global geometry of M, which is saturated only by the Euclidean three-balls. For capillary stable CMC surfaces, we also obtain similar results.
This project uses methods in geometric analysis to study almost complex manifolds. We introduce the notion of biharmonic almost complex structure on a compact almost Hermitian manifold and study its regularity and existence in dimension four. First, we show that there always exists smooth energy-minimizing biharmonic almost-complex structures for any almost Hermitian four manifold. Then, we study the existence problem where the homotopy class is specified. Given a homotopy class $[\tau ]$ of an almost complex structure, using the fact $\pi _4(S^2)=\mathbb {Z}_2$, there exists a canonical operation p on the homotopy classes satisfying $p^2=\text {id}$ such that $p([\tau ])$ and $[\tau ]$ have the same first Chern class. We prove that there exists an energy-minimizing biharmonic almost complex structure in the companion homotopy classes $[\tau ]$ and $p([\tau ])$. Our results show that, When M is simply connected, there exists an energy-minimizing biharmonic almost complex structure in the homotopy classes with the given first Chern class.
In this short note, we deal with complete noncompact expanding and steady Ricci solitons of dimension $n\geq 3.$ More precisely, under an integrability assumption, we obtain a characterization for the generalized cigar Ricci soliton and the Gaussian Ricci soliton.
We prove Reilly-type upper bounds for the first nonzero eigenvalue of the Steklov problem associated with the p-Laplace operator on submanifolds of manifolds with sectional curvature bounded from above by a nonnegative constant.
Kanai proved powerful results on the stability under quasi-isometries of numerous global properties (including Liouville property) between Riemannian manifolds of bounded geometry. Since his work focuses more on the generality of the spaces considered than on the two-dimensional geometry, Kanai's hypotheses in many cases are not satisfied in the context of Riemann surfaces endowed with the Poincaré metric. In this work we fill that gap for the Liouville property, by proving its stability by quasi-isometries for every Riemann surface (and even Riemannian surfaces with pinched negative curvature). Also, a key result characterizes Riemannian surfaces which are quasi-isometric to $\mathbb {R}$.
We show that a complete, two-sided, stable immersed anisotropic minimal hypersurface in $\mathbf {R}^4$ has intrinsic cubic volume growth, provided the parametric elliptic integral is $C^2$-close to the area functional. We also obtain an interior volume upper bound for stable anisotropic minimal hypersurfaces in the unit ball. We can estimate the constants explicitly in all of our results. In particular, this paper gives an alternative proof of our recent stable Bernstein theorem for minimal hypersurfaces in $\mathbf {R}^4$. The new proof is more closely related to techniques from the study of strictly positive scalar curvature.
We develop the theory of left-invariant generalized pseudo-Riemannian metrics on Lie groups. Such a metric accompanied by a choice of left-invariant divergence operator gives rise to a Ricci curvature tensor, and we study the corresponding Einstein equation. We compute the Ricci tensor in terms of the tensors (on the sum of the Lie algebra and its dual) encoding the Courant algebroid structure, the generalized metric, and the divergence operator. The resulting expression is polynomial and homogeneous of degree 2 in the coefficients of the Dorfman bracket and the divergence operator with respect to a left-invariant orthonormal basis for the generalized metric. We determine all generalized Einstein metrics on three-dimensional Lie groups.
We show that the singularities of the twisted Kähler–Einstein metric arising as the longtime solution of the Kähler–Ricci flow or in the collapsed limit of Ricci-flat Kähler metrics are intimately related to the holomorphic sectional curvature of reference conical geometry. This provides an alternative proof of the second-order estimate obtained by Gross, Tosatti, and Zhang (2020, Preprint, arXiv:1911.07315) with explicit constants appearing in the divisorial pole.
We investigate the pluriclosed flow on Oeljeklaus–Toma manifolds. We parameterize left-invariant pluriclosed metrics on Oeljeklaus–Toma manifolds, and we classify the ones which lift to an algebraic soliton of the pluriclosed flow on the universal covering. We further show that the pluriclosed flow starting from a left-invariant pluriclosed metric has a long-time solution $\omega _t$ which once normalized collapses to a torus in the Gromov–Hausdorff sense. Moreover, the lift of $\tfrac {1}{1+t}\omega _t$ to the universal covering of the manifold converges in the Cheeger–Gromov sense to $(\mathbb H^s\times \mathbb C^s, \tilde {\omega }_{\infty })$, where $\tilde {\omega }_{\infty }$ is an algebraic soliton.
This paper is about a type of quantitative density of closed geodesics and orthogeodesics on complete finite-area hyperbolic surfaces. The main results are upper bounds on the length of the shortest closed geodesic and the shortest doubly truncated orthogeodesic that are $\varepsilon$-dense on a given compact set on the surface.
Let $n\geq 2$ random lines intersect a planar convex domain D. Consider the probabilities $p_{nk}$, $k=0,1, \ldots, {n(n-1)}/{2}$ that the lines produce exactly k intersection points inside D. The objective is finding $p_{nk}$ through geometric invariants of D. Using Ambartzumian’s combinatorial algorithm, the known results are instantly reestablished for $n=2, 3$. When $n=4$, these probabilities are expressed by new invariants of D. When D is a disc of radius r, the simplest forms of all invariants are found. The exact values of $p_{3k}$ and $p_{4k}$ are established.
In this short paper, we show a sufficient condition for the solvability of the Dirichlet problem at infinity in Riemannian cones (as defined below). This condition is related to a celebrated result of Milnor that classifies parabolic surfaces. When applied to smooth Riemannian manifolds with a special type of metrics, which generalize the class of metrics with rotational symmetry, we obtain generalizations of classical criteria for the solvability of the Dirichlet problem at infinity. Our proof is short and elementary: it uses separation of variables and comparison arguments for ODEs.
In the present note, we establish a finiteness theorem for $L^p$ harmonic 1-forms on hypersurfaces with finite index, which is an extension of the result of Choi and Seo (J. Geom. Phys.129 (2018), 125–132).
Crofton formulas on simply connected Riemannian space forms allow the volumes, or more generally the Lipschitz–Killing curvature integrals of a submanifold with corners, to be computed by integrating the Euler characteristic of its intersection with all geodesic submanifolds. We develop a framework of Crofton formulas with distributions replacing measures, which has in its core Alesker's Radon transform on valuations. We then apply this framework, and our recent Hadwiger-type classification, to compute explicit Crofton formulas for all isometry-invariant valuations on all pseudospheres, pseudo-Euclidean and pseudohyperbolic spaces. We find that, in essence, a single measure which depends analytically on the metric, gives rise to all those Crofton formulas through its distributional boundary values at parts of the boundary corresponding to the different indefinite signatures. In particular, the Crofton formulas we obtain are formally independent of signature.