To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Patterns of extinction risk can vary across taxa, with species of some groups being particularly vulnerable to extinction. Rails (Aves: Rallidae) represent one of the most extreme yet well-documented cases of mass extinction within a modern vertebrate group. Between 54 and 92% of rail species became extinct following waves of human contact during both the Holocene and the Anthropocene eras, and a third of the extant species are currently threatened or near-threatened. Here, we (1) examine extinction filters through consecutive human contacts with rails, investigating the role of intrinsic life-history traits and (2) investigate the drivers of contemporary vulnerability. During the most recent wave of extinction, we found that body size was an important correlate of rail extinctions, with both smaller and larger bodied species more likely to become extinct. Island endemism and small clutch size were the strongest predictors of contemporary vulnerability. Overall, island endemic rails tend to follow the same trajectory as extinct species, suffering mostly from invasive predators and overhunting, but with different traits targeted contemporarily compared to past extinctions. Moreover, modern anthropogenic threats have created the potential for new intricate pathways – or a contemporary ‘field of bullets’ – making future vulnerability potentially less predictable.
Otoliths are an excellent tool for analysing the pattern of habitat use between adults and juveniles and connectivity between fish populations. Larimus breviceps is a species belonging to the family Sciaenidae, which has an important role in the marine food chain, as it is one of the most abundant and frequent species in the bycatch of coastal shrimp fisheries in Brazil. The present study aimed at comparing the otolith shape of specimens collected in three different Brazilian coastal areas: Sergipe (SE), northeastern region; São Paulo (SP), southeastern region; and Paraná (PR), southern region. In a laboratory, 88 otoliths were extracted, photographed, and the contour was analysed by the wavelet method (32 from SE, 28 from SP, and 28 from PR). The otolith contours varied between sampling sites. Linear discriminant analysis correctly reclassified 60.23% otoliths by the sampled sites, with the best reclassifications occurring in SE (62.5%), followed by PR (60.71%) and SP (57.14%). Multivariate analysis of variance also evidenced significant differences in contours among the sampling sites (F = 2.3; P < 0.005). Thus, two morphotypes of otoliths were found for L. breviceps: one from Sergipe (northeastern Brazil) and the second one from southeastern–southern Brazil, indicating connectivity between the populations off São Paulo and Paraná, to be confirmed by future genetic studies.
In Europe, population estimates of breeding birds are produced nationally and are periodically compiled at EU or pan-European scales. Until now, no other source was available to explore the robustness of these estimates. In this study, we compared population sizes reported in the latest edition of the European Red List of Birds (ERLoB) with those produced using data from the second European Breeding Bird Atlas (EBBA2) to assess their consistency and determine parameters behind variability in population estimates that deserve further attention in the future. In general, European population estimates derived from summing local abundance data from EBBA2 were similar to those obtained from ERLoB, although for some species they differed considerably, particularly in those distributed mainly in southern Europe. National population estimates from EBBA2 also did not differ markedly from those in ERLoB. However, we found that EBBA2 provided larger national population sizes than ERLoB for widespread species, suggesting that spatial information is more relevant for properly assessing their population size than for localised species. Our analysis also showed that, in general, population estimates based on robust methodological protocols (e.g. complete counts, statistical inference) contributed to reducing differences between ERLoB and EBBA2 values. Interestingly, EBBA2 and ERLoB estimates were quite similar for species classified in Europe as “Threatened” or “Near Threatened”, whereas the values for “Least Concern” species were consistently different between these two sources. Our results indicate which type of species would benefit from additional efforts to improve national population estimates and their consistency across countries, issues that are of paramount importance for guiding conservation strategies in Europe.
The Permian–Triassic climate crisis can provide key insights into the potential impact of horizon threats to modern-day biodiversity. This crisis coincides with the same extensive environmental changes that threaten modern marine ecosystems (i.e., thermal stress, deoxygenation and ocean acidification), but the primary drivers of extinction are currently unknown. To understand which factors caused extinctions, we conducted a data analysis to quantify the relationship (anomalies, state-shifts and trends) between geochemical proxies and the fossil record at the most intensively studied locality for this event, the Meishan section, China. We found that δ18Oapatite (paleotemperature proxy) and δ114/110Cd (primary productivity proxy) best explain changes in species diversity and species composition in Meishan’s paleoequatorial setting. These findings suggest that the physiological stresses induced by ocean warming and nutrient availability played a predominant role in driving equatorial marine extinctions during the Permian–Triassic event. This research enhances our understanding of the interplay between environmental changes and extinction dynamics during a past climate crisis, presenting an outlook for extinction threats in the worst-case “Shared Socioeconomic Pathways (SSP5–8.5)” scenario.
The sea urchin Arbacia spatuligera is an echinoid distributed in the Southeastern Pacific Ocean from Peru to Chile. This species was previously reported from the subtidal zone with a bathymetric distribution up to 30 m depth. In this work, 128 individuals were found in four mesophotic reefs along the central coast off Chile using closed-circuit rebreathers in technical diving at higher depths than previously, ranging from 36 to 63 m in depth. A population exhibits unexpected morphological characters, requiring an emended diagnosis and description of a new morphotype for A. spatuligera. These morphological traits are further discussed as potential ecophenotypic adaptations.
Taxonomic intricacies and high interspecific similarity have hampered the identification of scyllarid phyllosoma larvae to the species level. The pygmy locust lobster, Scyllarus pygmaeus, is distributed across the Mediterranean Sea and in the eastern Atlantic; however, its phyllosoma larvae were previously recorded only from the western Mediterranean. We employed DNA barcoding using the mitochondrial COI gene to identify S. pygmaeus phyllosoma collected from the offshore waters of the southeastern Mediterranean Sea and described its morphology. We further discuss the lack of genetic structure in S. pygmaeus with potential implications for species connectivity and conservation.
The hypersaline Lake Urmia, located in Iran, has undergone a significant reduction in size and is currently facing the risk of desiccation. The decrease in water levels, coupled with elevated salinity levels, has initiated ecological degradation, leading to a substantial decline in the region’s waterbird population. This study employs breakpoint analysis to determine the year when the drought event affecting the lake commenced. Additionally, canonical correspondence analysis (CCA) is utilised to elucidate the interaction between environmental parameters and the waterbird assemblages in Lake Urmia over the period 1970–2018. Our investigation identifies the year 2000 as the initiation of the water crisis in Lake Urmia, synchronously coinciding with the decline in the waterbird populations. This finding highlights a significant connection between the majority of waterbird species and the axes of CCA, intricately linked with water availability within Lake Urmia. This revelation underscores the pivotal role of fluctuations in water levels in shaping the dynamics of the lake’s waterbird assemblages. Furthermore, our observations emphasise the importance of even minor improvements in hydrological conditions of the lake, resulting in substantial positive impacts on waterbird populations.
Large-scale outbreaks of the dinoflagellate Karenia mikimotoi caused substantial mortality of abalone, Haliotis discus hannai in Fujian, China in 2012, resulting in 20 billion in economic losses to abalone industries. However, the mechanism behind the mortality, especially the reaction of abalone to this microalgal toxicity, which possibly differed significantly from the former ‘fish killer’ strain in the South China Sea (SCS). Our study revealed that K. mikimotoi FJ-strain exhibited a four-fold higher haemolytic toxicity than the SCS-strain during the late exponential phase. At the microalgal cell density of 3 × 107 cell L−1, the FJ-strain caused abalone mortality of 67% in 48 h, with decreased granulocyte–hyalinocyts ratio and phagocytic activity by 58.96% and 75.64%, respectively, increased haemocyte viability by 4.8-fold and severe gill damage. The toxic effect only worked for the haemolytic toxicity from active algal cells, which were probably produced under the contact of algal cells and abalone gills. However, under exposure to the SCS-strain, more than 80% of individuals survived under aeration. The results indicated that FJ-strain was a new K. mikimotoi ecotype with stronger toxicity. It evoked severe effects, with complete abalone mortality within 24 h under the cascading effect of non-aeration (dissolved oxygen declined to 2.0 mg L−1), when exposed to K. mikimotoi FJ-strain at the above density. Thus, apart from the microalgal toxicity, DO depletion exacerbated the mortality of abalone in the experiment. The massive abalone mortalities in Fujian were probably caused by the combination of microalgal toxic effects and oxygen depletion, leading to immunological depression and histopathological disruption.
The endemic Little Vermilion Flycatcher (LVF) Pyrocephalus nanus has suffered a drastic decline on Santa Cruz Island, Galapagos, where it was common 30 years ago. Currently, fewer than 40 individuals remain in the last remnants of natural humid forest in the Galapagos National Park on the island. This small population has low reproductive success, which is contributing to its decline in Santa Cruz. Previous studies have identified Avian Vampire Fly Philornis downsi parasitism, changes in food sources, and habitat alteration as threats to this species. In Santa Cruz, invasive plants may strongly affect the reproductive success of LVF because they limit accessibility to prey near the ground, the preferred foraging niche of these birds. Since 2019, we restored the vegetation in seven plots of 1 ha each by removing invasive blackberry plants and other introduced plant species. In all nests that reached late incubation, we also reduced the number of Avian Vampire Fly larvae. In this study, we compared foraging and perch height, pair formation, incubation time, and reproductive success between managed and unmanaged areas. As predicted, we found significantly lower foraging height and perch height in 2021 in managed areas compared with unmanaged areas. In 2020, the daily failure rate (DFR) of nests in the egg stage did not differ between management types; however, in 2021, the DFR in the egg stage was significantly lower in managed areas than in unmanaged areas. The DFR during the nestling stage was similar between managed and unmanaged areas in 2020, but in 2021, only nests in managed areas reached the nestling stage. Females brooded significantly more during the incubation phase in managed areas. Additionally, we found significantly higher reproductive success in managed areas compared with unmanaged areas in 2021, but not in 2020. Habitat restoration is a long-term process and these findings suggest that habitat management positively affects this small population in the long term.
While much work on expertise has explored the mobilisation and production of knowledge, the development of epistemic communities, and the mechanisms through which expertise operates – little work has been done exploring how expertise is understood across academic literature on particular regional cases such as the Arctic. In this article, I scope a broad literature review of the Arctic, seeking out how expertise has been depicted and framed in academic and theoretical literature. The results are framed around five different themes: (1) expertise serving the interests of great powers, (2) recognition of the overall importance of expertise in Arctic governance, (3) the purpose of experts, (4) science diplomacy and expertise: a murky barrier, and (5) how to study experts, but also find that Indigenous knowledge is often left out of literature that relies upon Western frameworks of expertise. This incongruity suggests that there are two competing conceptualizations of Arctic expertise, one in theory and another in practice – which has consequences for how the region and its expertise are narrated.
The “Critically Endangered” Alagoas Antwren Myrmotherula snowi is found only in the Atlantic Rainforest of north-east Brazil. We surveyed all sites where the species has been recorded, as well as 15 other potential sites. We summarise all observations of the species, focusing on the period from 2016 onwards, and including systematic censuses in three breeding seasons (October–March 2018/19, 2019/20, and 2020/21) at the type locality, Murici, where we also searched for nests of the species. We did not locate any individuals at sites other than Murici. The number of apparent individuals detected declined by 67% over seven years (a decline of 50% over the three years in which standardised systematic counts were made), and only six adults were observed in the most recent breeding season. The global population is now likely to be in single-digit figures. Of five nests found, four failed, through predation by snakes and opossums, and abandonment. We installed protective barriers to protect two of these nests from predators, which may have contributed to the single successful fledging. Such methods offer most hope for now of stalling the decline. Efforts to develop captive breeding methods with model species have been underway since 2019 but face many difficulties. Improving habitat protection and restoration is crucial but will only take effect in the long term.
Many European farmland bird populations are rapidly declining because of agricultural intensification and land-use changes. Robust estimates of population sizes and trends, habitat use, and protected area coverage within the distribution range are crucial to inform the conservation and management of threatened species. Here we report on the results of the 2019 Black-bellied Sandgrouse Pterocles orientalis (BBS) survey promoted and coordinated by SEO/BirdLife to update its breeding distribution, population size, and trends in continental Spain. A total of 660 grid cells, 10 × 10 km, Universal Transverse Mercator (UTM), were surveyed (81% of the distribution area), with 2,257 visits to 1,750 walked transects (7,001 km in total; 10.6 km per UTM). BBS was detected in 43% of sampled UTMs. At transect level, occupancy was 11% higher inside protected areas. At UTM level, occupancy was estimated at 0.58 (Bayesian credible interval [BCI] 95%: 0.55–0.61), revealing that BBS occupied about half of its previous breeding range (2003–2005). Using hierarchical distance sampling modelling, we estimated an average density of 1.33 individuals/km2 in occupied areas, and a population of 4,025 individuals (confidence interval: 1,840–7,609) within sampled areas, with an additional 697 individuals (confidence interval 461–1,075) in areas that were not surveyed. Further, the relative abundance of BBS (Kilometric Abundance Index) declined by 63% between 2005 and 2019 (annual decline rate of 4.5%). BBS used agricultural habitats (73%) and unprotected areas (54%) despite a higher occupancy within protected areas. Given the recent decline rate and persistent threats, the BBS conservation status should be upgraded to “Endangered” in peninsular Spain. Its future depends on land-use changes and agricultural practices, in particular the maintenance of fallows, semi-natural habitats, and pastures for extensive grazing. Better protection of important areas and targeted conservation initiatives should be promoted to halt and reverse the population decline in this key western Palearctic stronghold.
Land-use change for crop production is one of the key drivers of habitat loss and fragmentation and consequently biodiversity loss and change in tropical regions. This may impact biodiversity-regulated ecosystem services; birds are important to crop health regulating services (e.g. seed dispersal, pest control) and disservices (e.g. seed predation, grain herbivory). However, knowledge is limited on how birds use heterogeneous agricultural landscapes and the consequences for spatial distribution and flow of services and disservices. We studied crop and non-crop–habitat associations of birds in forest–agricultural landscapes of the Kilombero Valley, Tanzania. We focused on dietary preference as a key trait impacting bird responses to land-use change, services, and disservices to crops. We surveyed birds across four main habitat types using repeated point counts, recording a total of 148 species. We found that crop habitats supported higher species richness and larger communities of potentially beneficial species to crop health, whereby 34.5% of invertebrate-feeding species were recorded in cropland. We found that habitat heterogeneity within the landscape supports bird functional diversity and that each habitat type supported unique communities of species. Furthermore, the number of species unique to forest habitats increased with increasing forest canopy closure. Our findings suggest that management strategies for maintaining trees and shrubs, and enhancing tree cover within the crop production landscape, can be effective approaches for maintaining bird diversity and services. However, in-depth studies on trade-offs with disservices need further exploration to mitigate negative impacts of birds on crop yields.
Bivalve molluscs are a diverse group of animals with particular economic and ecological importance. Their morphological characteristics frequently confuse their identification leading to mislabelling of edible species. Genetic diversity is critical to the resilience of marine bivalve populations in the face of environmental stressors such as ocean acidification and warming. In this study, we characterized the phylogeny and defined the first DNA barcodes of six marine bivalves [Ostrea edulis (Linnaeus, 1758) Arca noae (Linnaeus, 1758), Pinctada radiata (Leach, 1814), Venus verrucosa (Linnaeus, 1758), Calllista chione (Linnaeus, 1758) and Ruditapes decussatus (Linnaeus, 1758)] sampled from different coastal areas of Aegean and Ionian Seas using the molecular markers cytochrome c oxidase subunit I (COI) and 18S ribosomal RNA (18S rRNA). Further, COI gene was employed to investigate the population genetic diversity since 18S rRNA exhibited no conspecific differences. The sequence of 18S rRNA successfully discriminated the bivalves at family or superfamily level but occasionally proved insufficient for species identification. Contrariwise, COI was highly informative and could reliably distinguish all species. Population haplotype diversity was moderate to high and was always accompanied by generally low nucleotide diversity, indicating genetically closely related haplotypes. The invasive Pinctada radiata was found to be panmictic even among distant sampling areas, while Ostrea edulis was the only species that exhibited moderate levels of population subdivision. Finally, here we report for the first time the presence of Ostrea stentina in Thermaikos Gulf sampled among Ostrea edulis specimens, demonstrating a new invasive bivalve species in Eastern Mediterranean.
The evaluation of the effects of early starvation and feeding on survival and growth in the early stages of the life cycle of ornamental marine caridean shrimp species is fundamental to establish adequate feeding protocols in their culture. In this study, we determine the nutritional vulnerability in the early larval stages of ornamental shrimp Lysmata ankeri exposed to different periods of starvation or feeding. The larvae were separated into three groups (zoea I-ZI, zoea II with ZI fed, and zoea II with ZI unfed) and subjected to two experiments: (1) point-of-no-return (PNR), comprising one or two days of initial starvation followed by feeding; and (2) point-of-reserve-saturation (PRS), comprising one or two days of initial feeding followed by starvation. Each experiment was still composed of two control groups: continuous feeding and continuous starvation. Larvae tolerated some periods of starvation, with a high PNR value (2.00) and low PRS (0.50). Longer periods of starvation influenced both growth and survival rates in zoea II stages. The nutritional vulnerability index for zoea I was 0.25, which represents a low dependence on food supply. In this study, it was observed that ornamental shrimp L. ankeri larvae hatch with energy reserves, presenting facultative primary lecithotrophy, in which they are able to moult from zoea I to zoea II using such reserves in the absence of food. In this sense, the early larvae stages (zoeas I and II) can tolerate a certain period of starvation, indicating the great potential of this species for aquaculture.
Climate change poses a major threat to marine ecosystems, with its effects felt worldwide. A major effect of climate change on marine ecosystems is the rise in water temperature, leading to a northward expansion of habitats for marine organisms. Herdmania momus, a species of ascidians (sea squirts), originally found in tropical and subtropical regions, was introduced to the Korean Peninsula. In this study, we examined the habitat of H. momus along the southeastern coast of the Korean Peninsula between 2016 and 2022. We found that H. momus settlements were observed across the entire survey area, with confirmed habitation in Busan in 2016, Ulsan in 2021, and Gyeongju (the northernmost location) in 2022. The observed habitation trend indicates a rapid geographical expansion, occurring approximately 79 years earlier than previously predicted. These observations demonstrate that marine organisms are undergoing a more rapid geographical expansion than previously projected. These unexpected findings should inform government policies related to proactive measures and strategies for managing the impact of climate change on marine ecosystems.
Phylodynamic models can be used to estimate diversification trajectories from time-calibrated phylogenies. Here we apply two such models to phylogenies of non-avian dinosaurs, a clade whose evolutionary history has been widely debated. Although some authors have suggested that the clade experienced a decline in diversity, potentially starting millions of years before the end-Cretaceous mass extinction, others have suggested that the group remained highly diverse right up until the Cretaceous-Paleogene (K-Pg) boundary. Our results show that model assumptions, likely with respect to incomplete sampling, have a large impact on whether dinosaurs appear to have experienced a long-term decline or not. The results are also highly sensitive to the topology and branch lengths of the phylogeny used. Developing comprehensive models of sampling bias, and building larger and more accurate phylogenies, are likely to be necessary steps for us to determine whether dinosaur diversity was or was not in decline before the end-Cretaceous mass extinction.