To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
X-ray crystallography of 3-D bulk materials opened entire new fields of discovery in the twentieth century, from elemental crystals to DNA molecules. Similarly, the determination of atomic-scale structure of 2-D surfaces of condensed matter has achieved fundamental new understanding and generated powerful techniques that helped spawn new areas of research, from catalysis to nanotechnology, for the twenty-first century. Specific examples include, among many others: new catalysts; various new carbon structures (such as buckminsterfullerenes, nanotubes and graphene); quantum dots used in optoelectronic displays (including television displays); molecules allowing electron transport and switching; nanoparticles enabling targeted drug delivery; and nanomachines for future manufacturing and medical applications.
LEED has found widespread application in surface science, since the LEED experiment can be performed in a small laboratory and LEED systems are commercially available. A main advantage compared to surface X-ray diffraction is that on the LEED screen most of the 2-D diffraction pattern is visible, thus allowing a quick and comprehensive overview of the symmetry and to some extent about the degree of ordering of the surface under examination. A LEED system is therefore included in most UHV chambers to control the quality of the surface preparation for a wide range of surface studies. A qualitative interpretation of the diffraction pattern is the most common use of LEED: it allows the identification of the surface unit cell, the estimation of the degree of ordering and the identification of different surface phases in adsorption systems (and thereby often a check on adsorbate coverage). The diffraction pattern thus reflects the translational symmetry and the crystalline order of the surface.
Dual-purpose sorghum response to anthracnose disease, growth, and yield was undertaken in Derashe and Arba Minch trial sites during March–June 2018 and 2019. Five sorghum varieties and Rara (local check) were arranged in a randomized complete block design with four replications. Variety Chelenko exhibited the tallest main crop plant height (430 cm) while Dishkara was the tallest (196.65 cm) at ratoon crop harvesting. Rara had a higher tiller number (main = 6.73, ratoon = 9.73) among the varieties. Dishkara and Chelenko varieties produced 50 and 10% more dry biomass yield (DBY) than the overall mean DBY, while Konoda produced 40% less. Although the anthracnose infestation was highest on the varieties Konoda (percentage severity index [PSI] = 20.37%) and NTJ_2 (PSI = 32.19%), they produced significantly (p < .001) higher grain yield (3.89 t/ha) than others. Under anthracnose pressure, Chelenko and Dishkara varieties are suggested for dry matter yield while NTJ_2 for grain yield production in the study area and similar agroecology.
As mentioned in Section 2.2, a kinematic, that is, single-scattering, theory of LEED cannot describe experimental intensities with an accuracy that is sufficient to determine atomic positions and other non-structural information about surfaces. This degree of accuracy requires the inclusion of multiple scattering at a level of sophistication that is similar to that of electronic band structure calculations; in fact, some early versions of LEED theory employed methods of 3-D band structure theory, such as Bloch waves and pseudopotentials. However, the goal of surface structure determination by iterative optimisation of atomic positions with lower-dimensional periodicity and sometimes large 2-D unit cells requires very efficient calculational schemes of the multiple scattering of electrons.
The creamatocrit is a simple technique for estimating the lipid content of milk, widely adopted for clinical and research purposes. We evaluated the effect of long-term cryogenic storage on the creamatocrit for human milk.
Methods
Frozen and thawed milk specimens (n = 18) were subjected to the creamatocrit technique. The specimens were reanalyzed after long-term cryogenic storage (10 years at <70°C). The correlation between pre- and post-storage values was tested, and their differences were analyzed using the Bland–Altman plot.
Results
The pre- and post-storage values were highly correlated (r = 0.960, p < .0001). The Bland–Altman plot revealed a positive association between their differences and means (Pitman’s test r = 0.743, p < .001), suggesting the presence of nonconstant bias across the creamatocrit range. Long-term storage of human milk may introduce subtle bias to the creamatocrit in replicating pre-storage values. Further research should evaluate whether this bias is statistically correctable.
During military operations, soldiers are required to successfully complete numerous physical and cognitive tasks concurrently. Understanding the typical variance in research tools that may be used to provide insight into the interrelationship between physical and cognitive performance is therefore highly important. This study assessed the inter-day variability of two military-specific cognitive assessments: a Military-Specific Auditory N-Back Task (MSANT) and a Shoot-/Don’t-Shoot Task (SDST) in 28 participants. Limits of agreement ±95% confidence intervals, standard error of the mean, and smallest detectable change were calculated to quantify the typical variance in task performance. All parameters within the MSANT and SDST demonstrated no mean difference for trial visit in either the seated or walking condition, with equivalency demonstrated for the majority of comparisons. Collectively, these data provided an indication of the typical variance in MSANT and SDST performance, while demonstrating that both assessments can be used during seated and walking conditions.
This timely text covers the theory and practice of surface and nanostructure determination by low-energy electron diffraction (LEED) and surface X-ray diffraction (SXRD): it is the first book on such quantitative structure analysis in over 30 years. It provides a detailed description of the theory, including cutting-edge developments and tested experimental methods. The focus is on quantitative techniques, while the qualitative interpretation of the LEED pattern without quantitative I(V) analysis is also included. Topics covered include the future study of nanoparticles, quasicrystals, thermal parameters, disorder and modulations of surfaces with LEED, with introductory sections enabling the non-specialist to follow all the concepts and applications discussed. With numerous colour figures throughout, this text is ideal for undergraduate and graduate students and researchers, whether experimentalists or theorists, in the fields of surface science, nanoscience and related technologies. It can serve as a textbook for graduate-level courses of one or two semesters.
Statistical learning—the skill to pick up probability-based regularities of the environment—plays a crucial role in adapting to the environment and learning perceptual, motor, and language skills in healthy and clinical populations. Here, we developed a new method to measure statistical learning without any manual responses. We used the Alternating Serial Reaction Time (ASRT) task, adapted to eye-tracker, which, besides measuring reaction times (RTs), enabled us to track learning-dependent anticipatory eye movements. We found robust, interference-resistant learning on RT; moreover, learning-dependent anticipatory eye movements were even more sensitive measures of statistical learning on this task. Our method provides a way to apply the widely used ASRT task to operationalize statistical learning in clinical populations where the use of manual tasks is hindered, such as in Parkinson’s disease. Furthermore, it also enables future basic research to use a more sensitive version of this task to measure predictive processing.
Tungsten (W) films have many applications in the semiconducting industry for sensor technology. Deposition conditions can significantly impact the resulting W films in terms of the phases present (α-BCC or β-A12), microstructural grain orientation (texture), and residual strain. Tilt-A-Whirl methodology has been employed for the evaluation of a W film showing both texture and residual strain. Sin2(ψ) analysis of the film was performed to quantify the strongly tensile in-plane strain (+0.476%) with an estimated in-plane tensile stress of ~1.9 GPa. The 3D dataset was also evaluated qualitatively via 3D visualization. Visualization of 3D texture/strain data poses challenges due to peak broadening resulting from defocusing of the beam at high ψ tilt angles. To address this issue, principal component analysis (PCA) was employed to diagnose, model, and remove the broadening component from the diffraction data. Evaluation of the raw data and subsequent corrected data (after removal of defocusing effects) has been performed through projection of the data into a virtual 3D environment (via CAD2VR software) to qualitatively detect the impact of residual strain on the observed pole figure.
Cement references were reviewed and whole pattern methods were developed for the quantitative phase analysis (QPA) of Type I Portland Cements. A set of control references were established for phase identification and quantitative analysis using laboratory diffractometers. Both RIR and Rietveld whole pattern fitting methods were used in the analyses. A block refined, parameter restricted, Rietveld method produced the best QPA results by comparison with known mixtures. Similar to prior literature findings, care has to be taken because of the severe peak overlap of the major calcium silicate and calcium aluminate phases in Portland cement and the complexity of the chemistry and structures involved. Two of the four major phases identified are doped supercells and the major C3S phase is also disordered.