We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper gives a survey about the currently used methods for computing with polycyclic groups. It discusses the different representations for polycyclic groups, gives a brief outline of many existing methods and considers two algorithms in a little more detail: the Frattini subgroup algorithm and the methods for solving the conjugacy problem. The final section of the paper exhibits some open problems.
Let G be a finite group. A subgroup A of G is said to be S-permutable in G if A permutes with every Sylow subgroup P of G, that is, $AP=PA$. Let $A_{sG}$ be the subgroup of A generated by all S-permutable subgroups of G contained in A and $A^{sG}$ be the intersection of all S-permutable subgroups of G containing A. We prove that if G is a soluble group, then S-permutability is a transitive relation in G if and only if the nilpotent residual $G^{\mathfrak {N}}$ of G avoids the pair $(A^{s G}, A_{sG})$, that is, $G^{\mathfrak {N}}\cap A^{sG}= G^{\mathfrak {N}}\cap A_{sG}$ for every subnormal subgroup A of G.
We describe finite soluble nonnilpotent groups in which every minimal nonnilpotent subgroup is abnormal. We also show that if G is a nonsoluble finite group in which every minimal nonnilpotent subgroup is abnormal, then G is quasisimple and
$Z(G)$
is cyclic of order
$|Z(G)|\in \{1, 2, 3, 4\}$
.
A graph is edge-primitive if its automorphism group acts primitively on the edge set, and
$2$
-arc-transitive if its automorphism group acts transitively on the set of
$2$
-arcs. In this paper, we present a classification for those edge-primitive graphs that are
$2$
-arc-transitive and have soluble edge-stabilizers.
We prove Breuillard and Green’s theorem that a finite approximate subgroup of a soluble complex linear group G of bounded degree is contained in a union of a few cosets of a nilpotent group of bounded step. We first treat the special case in which G is an upper-triangular group. An important ingredient is Solymosi’s sum-product theorem over the complex numbers, which we state and prove. We introduce some basic representation theory and use it to prove that a soluble complex linear group of bounded degree has a subgroup of bounded index that is conjugate to an upper-triangular group; this is a special case of a result of Mal’cev. We then use this to extend from the upper-triangular case to the general soluble case.
The main purpose of this paper is to investigate the behaviour of uncountable groups of cardinality $\aleph$ in which all proper subgroups of cardinality $\aleph$ are nilpotent. It is proved that such a group $G$ is nilpotent, provided that $G$ has no infinite simple homomorphic images and either $\aleph$ has cofinality strictly larger than $\aleph _{0}$ or the generalized continuum hypothesis is assumed to hold. Furthermore, groups whose proper subgroups of large cardinality are soluble are studied in the last part of the paper.
The classes of finite groups with minimal sets of generators of fixed cardinalities, named ${\mathcal{B}}$-groups, and groups with the basis property, in which every subgroup is a ${\mathcal{B}}$-group, contain only $p$-groups and some $\{p,q\}$-groups. Moreover, abelian ${\mathcal{B}}$-groups are exactly $p$-groups. If only generators of prime power orders are considered, then an analogue of property ${\mathcal{B}}$ is denoted by ${\mathcal{B}}_{pp}$ and an analogue of the basis property is called the pp-basis property. These classes are larger and contain all nilpotent groups and some cyclic $q$-extensions of $p$-groups. In this paper we characterise all finite groups with the pp-basis property as products of $p$-groups and precisely described $\{p,q\}$-groups.
The well-behaved Sylow theory for soluble groups is exploited to prove an Euler product for zeta functions counting certain subgroups in pro-soluble groups. This generalizes a result of Grunewald, Segal and Smith for nilpotent groups.
Let $G$ be a finite group.It is proved that if the probability that two randomly chosen elements of $G$ generate a soluble group is greater than $\frac{11}{30}$ then $G$ itself is soluble.The bound is sharp, since two elements of the alternating group $A_5$ generate $A_5$ withprobability $\frac{11}{30}$.Similar probabilistic statements are proved concerning nilpotency and the property of having odd order.It is also proved that there is a number $\kappa$,strictly between $0$ and $1$, with the following property. Let $\cal X$ be any class of finite groups which is closed for subgroups, quotient groups and extensions.If the probability that two randomly chosen elementsof $G$ generate a group in $\cal X$ is greater than $\kappa$ then $G$ is in $\cal X$. The proofs use the classification of the finite simple groups and also some of the detailed information now available concerning maximal subgroups of finite almost simple groups. 1991 Mathematics Subject Classification:20F16, 20D06, 20D08, 60B99.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.