The triadic interactions and nonlinear energy transfer are investigated in a subsonic turbulent jet at
$Re = 450\,000$. The primary focus is on the role of these interactions in the formation and attenuation of streaky structures. To this end, we employ bispectral mode decomposition, a technique that extracts coherent structures associated with dominant triadic interactions. A strong triadic correlation is identified between Kelvin–Helmholtz (KH) wavepackets and streaks: interactions between counter-rotating KH waves generates streamwise vortices, which subsequently give rise to streaks through the lift-up mechanism. The most energetic streaks occur at azimuthal wavenumber
$m = 2$, with the dominant contributing triad being
$[m_1, m_2, m_3] = [1, 1, 2]$. The spectral energy budget reveals that the net effect of nonlinear triadic interactions is an energy loss from the streaks. As these streaks convect downstream, they engage in further nonlinear interactions with other frequencies, which drain their energy and ultimately lead to their attenuation. Further analysis identifies the dominant scales and direction of energy transfer across different spatial regions of the jet. While the turbulent jet exhibits a forward energy cascade in a global sense, the direction of energy transfer varies locally: in the shear layer near the nozzle exit, triadic interactions among smaller scales dominate, resulting in an inverse energy cascade, whereas farther downstream, beyond the end of the potential core, interactions among larger scales prevail, leading to a forward cascade.