Hostname: page-component-68c7f8b79f-xc2tv Total loading time: 0 Render date: 2025-12-18T15:49:19.908Z Has data issue: false hasContentIssue false

On the subcritical transitional threshold in two-dimensional plane Poiseuille flow

Published online by Cambridge University Press:  15 December 2025

Yuanyuan Gao
Affiliation:
Department of Fluid Machinery and Engineering, Xi’an Jiaotong University, Shaanxi 710049, PR China
Tongsheng Wang
Affiliation:
Department of Fluid Machinery and Engineering, Xi’an Jiaotong University, Shaanxi 710049, PR China
Jianan Chen
Affiliation:
Department of Fluid Machinery and Engineering, Xi’an Jiaotong University, Shaanxi 710049, PR China
Guang Xi
Affiliation:
Department of Fluid Machinery and Engineering, Xi’an Jiaotong University, Shaanxi 710049, PR China
Zhu Huang*
Affiliation:
Department of Fluid Machinery and Engineering, Xi’an Jiaotong University, Shaanxi 710049, PR China
*
Corresponding author: Zhu Huang, zhuhuang@xjtu.edu.cn

Abstract

The nonlinear Tollmien–Schlichting waves mechanism of subcritical transitional flow in quasi-two-dimensional flow and two-dimensional (2-D) plane Poiseuille flow have been investigated (Camobreco et al. 2023 J. Fluid Mech., vol. 963, p. R2; Huang et al. 2024 J. Fluid Mech., vol. 994, p. A6). However, the subcritical transitional flow threshold has remained unsolved for 2-D shear flows since the problem was proposed in Trefethen et al. (1993 Science vol. 261, no. 5121, pp. 578–584). In this study, we proposed a theoretical analysis based on the nonlinear non-modal analysis and asymptotic analysis to quantify the scaling law for subcritical transitional flow of 2-D plane Poiseuille flow. The subcritical transitional flow induced by the critical disturbance experiences the nonlinear edge state with invariant disturbance kinetic energy (Huang et al. 2024 J. Fluid Mech. vol. 994, p. A6). Consequently, the required magnitude along with the edge state is predicted by asymptotic analysis, and the a priori threshold is achieved theoretically. All stages are validated by the numerical minimal seeds of different channels. The proposed theory predicts that the scaling laws are $O(Re^{-11/3})$ and $O(\textit{Re}^{-7/3})$ for the critical disturbances and their edge state, respectively. While the numerical thresholds of the subcritical transitional flow are $ \textit{Re}^{-11/3 \pm 0.06}$ and $ \textit{Re}^{-7/3 \pm 0.05}$, respectively.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Avila, K., Moxey, D., Lozar, A.D., Avila, M., Barkley, D. & Hof, B. 2011 The onset of turbulence in pipe flow. Science 333 (6039), 192196.10.1126/science.1203223CrossRefGoogle ScholarPubMed
Barkley, D., Song, B., Mukund, V., Lemoult, G., Avila, M. & Hof, B. 2015 The rise of fully turbulent flow. Nature 526 (7574), 550553.10.1038/nature15701CrossRefGoogle ScholarPubMed
Bedrossian, J., Germain, P. & Masmoudi, N. 2015 On the stability threshold for the 3D Couette flow in sobolev regularity. Ann. Math. 185 (2), 541608.Google Scholar
Bedrossian, J., Germain, P. & Masmoudi, N. 2019 Stability of the Couette flow at high Reynolds number in 2D and 3D. B. Am. Math. Soc. 56, 373414.10.1090/bull/1649CrossRefGoogle Scholar
Boffetta, G. & Ecke, R.E. 2012 Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44, 427451.10.1146/annurev-fluid-120710-101240CrossRefGoogle Scholar
Camobreco, C.J., Pothérat, A. & Sheard, G.J. 2023 Subcritical transition to turbulence in quasi-two-dimensional shear flows. J. Fluid Mech. 963, R2.10.1017/jfm.2023.345CrossRefGoogle Scholar
Camobreco, C.J., Pothérat, A. & Sheard, G.J. 2020 Transition to turbulence in quasi-two-dimensional mhd flow driven by lateral walls. Phys. Rev. Fluids 5 (11), 113902.10.1103/PhysRevFluids.5.113902CrossRefGoogle Scholar
Chapman, S.J. 2002 Subcritical transition in channel flows. J. Fluid Mech. 451, 3597.10.1017/S0022112001006255CrossRefGoogle Scholar
Del Zotto, A. 2023 Enhanced dissipation and transition threshold for the Poiseuille flow in a periodic strip. SIAM J. Math. Anal. 55 (5), 44104424.10.1137/21M1444011CrossRefGoogle Scholar
Ding, S. & Lin, Z. 2022 Enhanced dissipation and transition threshold for the 2-D plane Poiseuille flow via resolvent estimate. J. Differ. Equat. 332, 404439.10.1016/j.jde.2022.06.004CrossRefGoogle Scholar
Duguet, Y., Brandt, L. & Larsson, B.R.J. 2010 Scaling of the turbulence transition threshold in a pipe. Phys. Rev. E. 82, 026316.10.1103/PhysRevE.82.026316CrossRefGoogle Scholar
Duguet, Y., Monokrousos, L., Brandt, L. & Henningson, D.S. 2013 Minimal transition thresholds in plane Couette flow. Phys. Fluids 25, 084103.10.1063/1.4817328CrossRefGoogle Scholar
Elofsson, P.A. & Alfredsson, P.H. 1998 An experimental study of oblique transition in plane Poiseuille flow. J. Fluid Mech. 358, 177202.10.1017/S0022112097008288CrossRefGoogle Scholar
Farano, M., Cherubini, S., Robinet, J.C. & Palma, P.D. 2015 Hairpin-like optimal perturbations in plane Poiseuille flow. J. Fluid Mech. 775, R2.10.1017/jfm.2015.320CrossRefGoogle Scholar
Gustavsson, L.H. 1991 Energy growth of 3-d disturbances in plane Poiseuille flow. J. Fluid Mech. 224, 241260.10.1017/S002211209100174XCrossRefGoogle Scholar
Hagan, J. & Priede, J. 2015 Two-dimensional nonlinear travelling waves in magnetohydrodynamic channel flow. J. Fluid Mech. 2760, 387406.Google Scholar
Hof, B., Doorne, C.W.H.V., Westerweel, J., Nieuwstadt, F.T.M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R.R. & Waleffe, F. 2004 Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science 305 (5690), 15941598.10.1126/science.1100393CrossRefGoogle ScholarPubMed
Huang, Z., Gao, R., Gao, Y.Y. & Xi, G. 2024 Subcritical transitional flow in two-dimensional plane Poiseuille flow. J. Fluid Mech. 994, A6.10.1017/jfm.2024.752CrossRefGoogle Scholar
Huang, Z. & Hack, M.J.P. 2020 A variational framework for computing nonlinear optimal disturbances in compressible flows. J. Fluid Mech. 894, A5.10.1017/jfm.2020.189CrossRefGoogle Scholar
Jiménez, J. 1990 Transition to turbulence in two-dimensional Poiseuille flow. J. Fluid Mech. 218, 265297.10.1017/S0022112090001008CrossRefGoogle Scholar
Kerswell, R.R. 2018 Nonlinear nonmodal stability theory. Annu. Rev. Fluid Mech. 50, 319345.10.1146/annurev-fluid-122316-045042CrossRefGoogle Scholar
Lemoult, G., Aider, J.L. & Wesfreid, J.E. 2012 Experimental scaling law for the subcritical transition to turbulence in plane Poiseuille flow. Phys. Rev. E. 85, 025303.10.1103/PhysRevE.85.025303CrossRefGoogle ScholarPubMed
Lin, C.C. 1944 On the development of turbulence. PhD thesis, California Institute of Technology.Google Scholar
Marensi, E., Yalniz, G. & Hof, B. 2023 Dynamics and proliferation of turbulent stripes in plane-Poiseuille and plane-Couette flows. J. Fluid Mech. 974, A21.10.1017/jfm.2023.780CrossRefGoogle Scholar
Monokrousos, A., Bottaro, A., Brandt, L., Vita, A.D. & Henningson, D.S. 2011 Nonequilibrium thermodynamics and the optimal path to turbulence in shear flows. Phys. Rev. Lett. 106 (13), 134502.10.1103/PhysRevLett.106.134502CrossRefGoogle ScholarPubMed
Nishi, M., Unsal, B., Durst, F. & Biswas, G. 2008 Laminar-to-turbulent transition of pipe flows through puffs and slugs. J. Fluid Mech. 614, 425446.10.1017/S0022112008003315CrossRefGoogle Scholar
Nishioka, M. & Ichikawa, Y. 1975 An experimental investigation of the stability of plane Poiseuille flow. J. Fluid Mech. 72 (4), 731751.10.1017/S0022112075003254CrossRefGoogle Scholar
Orr, W.M.F. 1907 The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part i: a perfect liquid. Proc. R. Irish Acad. A 27, 968.Google Scholar
Orszag, S.A. 1971 Accurate solution of the Orr–Sommerfeld stability equation. J. Fluid Mech. 50 (4), 689703.10.1017/S0022112071002842CrossRefGoogle Scholar
Orszag, S.A. & Patera, A.T. 1980 Subcritical transition to turbulence in plane channel flows. Phys. Rev. Lett. 45 (12), 989993.10.1103/PhysRevLett.45.989CrossRefGoogle Scholar
Parente, E., Robinet, J.-C., De Palma, P. & Cherubini, S. 2022 Minimal energy thresholds for sustained turbulent bands in channel flow. J. Fluid Mech. 942, A18.10.1017/jfm.2022.364CrossRefGoogle Scholar
Philip, J., Svizher, A. & Cohen, J. 2007 Scaling law for a subcritical transition in plane Poiseuille flow. Phys. Rev. Lett. 98, 154502.10.1103/PhysRevLett.98.154502CrossRefGoogle ScholarPubMed
Pringle, C.C.T. & Kerswell, R.R. 2010 Using nonlinear transient growth to construct the minimal seed for shear flow turbulence. Phys. Rev. Lett. 105 (15), 154502.10.1103/PhysRevLett.105.154502CrossRefGoogle ScholarPubMed
Pringle, C.C.T., Willis, A.P. & Kerswell, R.R. 2012 Minimal seeds for shear flow turbulence: using nonlinear transient growth to touch the edge of chaos. J. Fluid Mech. 702, 415443.10.1017/jfm.2012.192CrossRefGoogle Scholar
Rabin, S.M.E., Caulfield, C.P. & Kerswell, R.R. 2012 Triggering turbulence efficiently in plane Couette flow. J. Fluid Mech. 712, 244272.10.1017/jfm.2012.417CrossRefGoogle Scholar
Reddy, S.C., Schmid, P.J., Baggett, J.S. & Henningson, D.S. 1998 On stability of streamwise streaks and transition thresholds in plane channel flows. J. Fluid Mech. 365, 269303.10.1017/S0022112098001323CrossRefGoogle Scholar
Reynolds, O. 1883 An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. R. Soc. Lond. 35, 8499.Google Scholar
Schmid, P.J. & Henningson, D.S. 2001 Stability and Transition in Shear Flows. Springer.10.1007/978-1-4613-0185-1CrossRefGoogle Scholar
Schmid, P.J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.10.1146/annurev.fluid.38.050304.092139CrossRefGoogle Scholar
Sulpizio, J.A., Ella, L., Rozen, A., Birkbeck, J., Perell, D.J., Dutta, D., Ben-Shalom, M., Taniguchi, T., Watanabe, K. & Holder, T. 2019 Visualizing Poiseuille flow of hydrodynamic electrons. Nature 576 (7785), 7579.10.1038/s41586-019-1788-9CrossRefGoogle ScholarPubMed
Taylor, J.R. 2008 Numerical simulations of the stratified oceanic bottom boundary layer. PhD thesis, University of California.Google Scholar
Trefethen, L.N., Chapman, S.J., Henningson, D.S., Meseguer, A., Mullin, T. & Nieuwstadt, F.T.M. 2000 Threshold amplitudes for transition to turbulence in a pipe. Tech. Rep. 00/17. Num. Anal. Group Report NA. 00/17. Oxford Univ.Google Scholar
Trefethen, L.N., Trefethen, A.E., Reddy, S.C. & Driscoll, T.A. 1993 Hydrodynamic stability without eigenvalues. Science 261 (5121), 578584.10.1126/science.261.5121.578CrossRefGoogle ScholarPubMed
Wang, J., Gibson, J. & Waleffe, F. 2007 Lower branch coherent states in shear flows: transition and control. Phys. Rev. Lett. 98, 204501.10.1103/PhysRevLett.98.204501CrossRefGoogle ScholarPubMed
Willis, A.P. & Kerswell, R.R. 2009 Turbulent dynamics of pipe flow captured in a reduced model: puff relaminarization and localized ‘edge’ states. J. Fluid Mech. 619, 213233.10.1017/S0022112008004618CrossRefGoogle Scholar