We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\mathbf {D}$ be a bounded homogeneous domain in ${\mathbb {C}}^n$. In this note, we give a characterization of the Stein domains in $\mathbf {D}$ which are invariant under a maximal unipotent subgroup N of $Aut(\mathbf {D})$. We also exhibit an N-invariant potential of the Bergman metric of $\mathbf {D}$, expressed in a Lie theoretical fashion. These results extend the ones previously obtained by the authors in the symmetric case.
A weighted nonlinear flag is a nested set of closed submanifolds, each submanifold endowed with a volume density. We study the geometry of Fréchet manifolds of weighted nonlinear flags, in this way generalizing the weighted nonlinear Grassmannians. When the ambient manifold is symplectic, we use these nonlinear flags to describe a class of coadjoint orbits of the group of Hamiltonian diffeomorphisms, orbits that consist of weighted isotropic nonlinear flags.
In this paper, we study sample size thresholds for maximum likelihood estimation for tensor normal models. Given the model parameters and the number of samples, we determine whether, almost surely, (1) the likelihood function is bounded from above, (2) maximum likelihood estimates (MLEs) exist, and (3) MLEs exist uniquely. We obtain a complete answer for both real and complex models. One consequence of our results is that almost sure boundedness of the log-likelihood function guarantees almost sure existence of an MLE. Our techniques are based on invariant theory and castling transforms.
Let $K$ be a compact Lie group with complexification $G$, and let $V$ be a unitary $K$-module. We consider the real symplectic quotient $M_{0}$ at level zero of the homogeneous quadratic moment map as well as the complex symplectic quotient, defined here as the complexification of $M_{0}$. We show that if $(V,G)$ is $3$-large, a condition that holds generically, then the complex symplectic quotient has symplectic singularities and is graded Gorenstein. This implies in particular that the real symplectic quotient is graded Gorenstein. In case $K$ is a torus or $\operatorname{SU}_{2}$, we show that these results hold without the hypothesis that $(V,G)$ is $3$-large.
Chapter II is devoted to the study of sheaves of monoids on a topological space.It includes the definition and basic constructions of monoschemes,which are generalizations of the fans classically used to construct toric varieties. Quasi-coherent sheaves of sets on monoschemese are defined, as well asprojective, proper, and separated morphisms of monoschemes.In particularit is shown how morphisms of monoschemes can be exactified by a monoidal transformation. Also discussed arethe key concepts of charts and coherence for a sheaf of monoids.
A relationship between symplectic geometry and information geometry is studied. The square of a dually flat space admits a natural symplectic structure that is the pullback of the canonical symplectic structure on the cotangent bundle of the dually flat space via the canonical divergence. With respect to the symplectic structure, there exists a moment map whose image is the dually flat space. As an example, we obtain a duality relation between the Fubini–Study metric on a projective space and the Fisher metric on a statistical model on a finite set. Conversely, a dually flat space admitting a symplectic structure is locally symplectically isomorphic to the cotangent bundle with the canonical symplectic structure of some dually flat space. We also discuss nonparametric cases.
We study the action of a real reductive group G on a real submanifold X of a Kähler manifold Z. We suppose that the action of G extends holomorphically to an action of the complexified group and that with respect to a compatible maximal compact subgroup U of the action on Z is Hamiltonian. There is a corresponding gradient map where is a Cartan decomposition of . We obtain a Morse-like function on X. Associated with critical points of are various sets of semistable points which we study in great detail. In particular, we have G-stable submanifolds Sβ of X which are called pre-strata. In cases where is proper, the pre-strata form a decomposition of X and in cases where X is compact they are the strata of a Morse-type stratification of X. Our results are generalizations of results of Kirwan obtained in the case where and X=Z is compact.
We decompose the Marsden–Weinstein reductions for the moment map associated to representations of a quiver. The decomposition involves symmetric products of deformations of Kleinian singularities, as well as other terms. As a corollary we deduce that the Marsden–Weinstein reductions are irreducible varieties.
We study the moment map associated to the cotangent bundle of the space of representations of a quiver, determining when it is flat, and giving a stratification of its Marsden–Weinstein reductions. In order to do this we determine the possible dimension vectors of simple representations of deformed preprojective algebras. In an appendix we use deformed preprojective algebras to give a simple proof of much of Kac's Theorem on representations of quivers in characteristic zero.
A symplectic fibration is a fibre bundle in the symplectic category (a bundle of symplectic fibres over a symplectic base with a symplectic structure group). We find the relation between the deformation quantization of the base and the fibre, and that of the total space. We consider Fedosov's construction of deformation quantization. We generalize the Fedosov construction to the quantization with values in a bundle of algebras. We find that the characteristic class of deformation of a symplectic fibration is the weak coupling form of Guillemin, Lerman, and Sternberg. We also prove that the classical moment map could be quantized if there exists an equivariant connection.
In this paper, we develop a method of localization in equivariant cohomology based on the notion of partition of unity cohomology. We apply this method in two cases. In the first case, this method gives a refinement of the localization of Atiyah–Bott and Berline–Vergne (in the frame given by Bismut). After, we consider the Hamiltonian action of a torus, and we realise, following the idea of Witten, the localization on the critical points of the square of the moment map.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.