We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A valuable feature of networks is their ability to quantify structural relationships. Much like a chemist who, having purified their sample, can bring to bear a wide range of tools for understanding their sample by transforming data into a network, a network scientist can leverage a range of tools that provide precise measurements of their data’s structure. This includes node-level measures like degree and centrality, meso-scale measures like community formation, and macro-scale measures like density and modularity. This chapter introduces these measures and gives a brief guide to their use.
The \textit{diameter} of a graph $G$, denoted $\diam G$, is the maximum distance between any two vertices in the graph. The \textit{diameter} of polyhedra is defined as the diameter of their graphs. While the chapter focusses on polytopes, polyhedra also feature in it.There is a connection between diameters of polyhedra and linear programming, and this is partially materialised through the \defn{Hirsch conjectures}, conjectures that relate the diameter of a polyhedra with its dimension and number of facets. We first show that the unbounded and monotonic versions of these conjectures are false (Section 7.2). Early on, Klee and Walkup (1967) realised that problems on the diameter of polyhedra can be reduced to problems on the diameter of simple polyhedra; this and other reductions are the focus of Section 7.3. We also present the counterexample of Santos (2012) for the bounded Hirsch conjecture. We then move to examine lower and upper bounds for the diameter of general polytopes and the diameter of specific polytopes. The final section is devoted to generalisations of polyhedra where diameters may be easier to compute or estimate.
In this chapter we investigate graph distances in preferential attachment models. We focus on typical distances as well as the diameter of preferential attachment models. We again rely on path-counting techniques, as well as local limit results. Since the local limit is a rather involved quantity, some parts of our analysis are considerably harder than those in Chapters 6 and 7.
In this chapter we investigate the distance structure of the configuration model by investigating its typical distances and its diameter. We adapt the path-counting techniques in Chapter 6 to the configuration model, and obtain typical distances from the “giant is almost local” proof. To understand the ultra-small distances for infinite-variance degree configuration models, we investigate the generation growth of infinite-mean branching processes. The relation to branching processes informally leads to the power-iteration technique that allows one to deduce typical distance results in random graphs in a relatively straightforward way.
In this chapter we investigate the small-world structure in rank-1 and general inhomogeneous random graphs. For this, we develop path-counting techniques that are interesting in their own right.
In this chapter, we look first at the diameter of random graphs, i.e., the extreme value of the shortest distance between a pair of vertices. Then we look at the size of the largest independent set and the related value of the chromatic number. One interesting feature of these parameters is that they are often highly concentrated.
Collagen plays a key role in the strength of aortic walls, so studying micro-structural changes during disease development is critical to better understand collagen reorganization. Second-harmonic generation microscopy is used to obtain images of human aortic collagen in both healthy and diseased states. Methods are being developed in order to efficiently determine the waviness, that is, tortuosity and amplitude, as well as the diameter, orientation, and dispersion of collagen fibers, and bundles in healthy and aneurysmal tissues. The results show layer-specific differences in the collagen of healthy tissues, which decrease in samples of aneurysmal aortic walls. In healthy tissues, the thick collagen bundles of the adventitia are characterized by greater waviness, both in the tortuosity and in the amplitude, compared to the relatively thin and straighter collagen fibers of the media. In contrast, most aneurysmal tissues tend to have a more uniform structure of the aortic wall with no significant difference in collagen diameter between the luminal and abluminal layers. An increase in collagen tortuosity compared to the healthy media is also observed in the aneurysmal luminal layer. The data set provided can help improve related material and multiscale models of aortic walls and aneurysm formation.
A graph is called radially maximal if it is not complete and the addition of any new edge decreases its radius. Harary and Thomassen [‘Anticritical graphs’, Math. Proc. Cambridge Philos. Soc.79(1) (1976), 11–18] proved that the radius r and diameter d of any radially maximal graph satisfy
$r\le d\le 2r-2.$
Dutton et al. [‘Changing and unchanging of the radius of a graph’, Linear Algebra Appl.217 (1995), 67–82] rediscovered this result with a different proof and conjectured that the converse is true, that is, if r and d are positive integers satisfying
$r\le d\le 2r-2,$
then there exists a radially maximal graph with radius r and diameter
$d.$
We prove this conjecture and a little more.
In this paper we study first passage percolation on a random graph model, the configuration model. We first introduce the notions of weighted diameter, which is the maximum of the weighted lengths of all optimal paths between any two vertices in the graph, and the flooding time, which represents the time (weighted length) needed to reach all the vertices in the graph starting from a uniformly chosen vertex. Our result consists in describing the asymptotic behavior of the diameter and the flooding time, as the number of vertices n tends to infinity, in the case where the weight distribution G has an exponential tail behavior, and proving that this category of distributions is the largest possible for which the asymptotic behavior holds.
In this work, we use rigorous probabilistic methods to study the asymptotic degree distribution, clustering coefficient, and diameter of geographical attachment networks. As a type of small-world network model, these networks were first proposed in the physical literature, where they were analyzed only with heuristic arguments and computational simulations.
Let $F$ be an algebraically closed field of characteristic $0$ and let $\operatorname{sp}(2l,F)$ be the rank $l$ symplectic algebra of all $2l\times 2l$ matrices $x=\big(\!\begin{smallmatrix}A & B\\ C & -A^{t}\end{smallmatrix}\!\big)$ over $F$, where $A^{t}$ is the transpose of $A$ and $B,C$ are symmetric matrices of order $l$. The commuting graph $\unicode[STIX]{x1D6E4}(\operatorname{sp}(2l,F))$ of $\operatorname{sp}(2l,F)$ is a graph whose vertex set consists of all nonzero elements in $\operatorname{sp}(2l,F)$ and two distinct vertices $x$ and $y$ are adjacent if and only if $xy=yx$. We prove that the diameter of $\unicode[STIX]{x1D6E4}(\operatorname{sp}(2l,F))$ is $4$ when $l>2$.
We investigate how the Minkowski sum of two polytopes affects their graph and, in particular, their diameter. We show that the diameter of the Minkowski sum is bounded below by the diameter of each summand and above by, roughly, the product between the diameter of one summand and the number of vertices of the other. We also prove that both bounds are sharp. In addition, we obtain a result on polytope decomposability. More precisely, given two polytopes $P$ and $Q$, we show that $P$ can be written as a Minkowski sum with a summand homothetic to $Q$ if and only if $P$ has the same number of vertices as its Minkowski sum with $Q$.
The total distance (or Wiener index) of a connected graph $G$ is the sum of all distances between unordered pairs of vertices of $G$. DeLaViña and Waller [‘Spanning trees with many leaves and average distance’, Electron. J. Combin.15(1) (2008), R33, 14 pp.] conjectured in 2008 that if $G$ has diameter $D>2$ and order $2D+1$, then the total distance of $G$ is at most the total distance of the cycle of the same order. In this note, we prove that this conjecture is true for 2-connected graphs.
Twenty one samples of relatively pure tubular halloysites (HNTs) from localities in Australia, China, New Zealand, Scotland, Turkey and the USA have been investigated by X-ray diffraction (XRD), infrared spectroscopy (IR) and electron microscopy. The halloysites occur in cylindrical tubular forms with circular or elliptical cross sections and curved layers and also as prismatic tubular forms with polygonal cross sections and flat faces. Measurements of particle size indicate a range from 40 to 12,700 nm for tube lengths and from 20 to 600 nm for diameters. Size distributions are positively skewed with mean lengths ranging from 170 to 950 nm and mean diameters from 50 to 160 nm. Cylindrical tubes are systematically smaller than prismatic ones. Features related to order/ disorder in XRD patterns e.g. as measured by a ‘cylindrical/prismatic’ (CP) index and IR spectra as measured by an ‘OH-stretching band ratio’ are related to the proportions of cylindrical vs. prismatic tubes and correlated with other physical measurements such as specific surface area and cation exchange capacity. The relationships of size to geometric form, along with evidence for the existence of the prismatic form in the hydrated state and the same 2M1 stacking sequence irrespective of hydration state (i.e. 10 vs. 7 Å) or form, suggests that prismatic halloysites are the result of continued growth of cylindrical forms.
Let $R$ be a commutative ring with non-zero identity. In this paper, we introduce the weakly nilpotent graph of a commutative ring. The weakly nilpotent graph of $R$ denoted by ${{\Gamma }_{w}}(R)$ is a graph with the vertex set ${{R}^{\star }}$ and two vertices $x$ and $y$ are adjacent if and only if $x\,y\in N{{(R)}^{\star }}$, where ${{R}^{\star }}=R\backslash \{0\}$ and $N{{(R)}^{\star }}$ is the set of all non-zero nilpotent elements of $R$. In this article, we determine the diameter of weakly nilpotent graph of an Artinian ring. We prove that if ${{\Gamma }_{w}}(R)$ is a forest, then ${{\Gamma }_{w}}(R)$ is a union of a star and some isolated vertices. We study the clique number, the chromatic number, and the independence number of ${{\Gamma }_{w}}(R)$. Among other results, we show that for an Artinian ring $R$, ${{\Gamma }_{w}}(R)$ is not a disjoint union of cycles or a unicyclic graph. For Artinan rings, we determine diam $\overline{({{\Gamma }_{w}}(R))}$. Finally, we characterize all commutative rings $R$ for which $\overline{({{\Gamma }_{w}}(R))}$ is a cycle, where $\overline{({{\Gamma }_{w}}(R))}$ is the complement of the weakly nilpotent graph of $R$.
Let $H$ be a group. The co-maximal graph of subgroups of $H$, denoted by $\Gamma \left( H \right)$, is a graph whose vertices are non-trivial and proper subgroups of $H$ and two distinct vertices $L$ and $K$ are adjacent in $\Gamma \left( H \right)$ if and only if $H\,=\,LK$. In this paper, we study the connectivity, diameter, clique number, and vertex chromatic number of $\Gamma \left( H \right)$. For instance, we show that if $\Gamma \left( H \right)$ has no isolated vertex, then $\Gamma \left( H \right)$ is connected with diameter at most 3. Also, we characterize all finitely groups whose co-maximal graphs are connected. Among other results, we show that if $H$ is a finitely generated solvable group and $\Gamma \left( H \right)$ is connected, and moreover, the degree of a maximal subgroup is finite, then $H$ is finite. Furthermore, we show that the degree of each vertex in the co-maximal graph of a general linear group over an algebraically closed field is zero or infinite.
The unitary Cayley graph of a ring $R$, denoted $\Gamma \left( R \right)$, is the simple graph defined on all elements of $R$, and where two vertices $x$ and $y$ are adjacent if and only if $x\,-\,y$ is a unit in $R$. The largest distance between all pairs of vertices of a graph $G$ is called the diameter of $G$ and is denoted by $\text{diam}\left( G \right)$. It is proved that for each integer $n\,\ge \,1$, there exists a ring $R$ such that $\text{diam}\left( \Gamma \left( R \right) \right)=n$. We also show that $\text{diam}\left( \Gamma \left( R \right) \right)\in \left\{ 1,2,3,\infty \right\}$ for a ring $R$ with ${R}/{J\left( R \right)}\;$ self-injective and classify all those rings with $\text{diam}\left( \Gamma \left( R \right) \right)\,=\,1,\,2,\,3$, and $\infty$, respectively.
In this paper we study random Apollonian networks (RANs) and evolving Apollonian networks (EANs), in d dimensions for any d≥2, i.e. dynamically evolving random d-dimensional simplices, looked at as graphs inside an initial d-dimensional simplex. We determine the limiting degree distribution in RANs and show that it follows a power-law tail with exponent τ=(2d-1)/(d-1). We further show that the degree distribution in EANs converges to the same degree distribution if the simplex-occupation parameter in the nth step of the dynamics tends to 0 but is not summable in n. This result gives a rigorous proof for the conjecture of Zhang et al. (2006) that EANs tend to exhibit similar behaviour as RANs once the occupation parameter tends to 0. We also determine the asymptotic behaviour of the shortest paths in RANs and EANs for any d≥2. For RANs we show that the shortest path between two vertices chosen u.a.r. (typical distance), the flooding time of a vertex chosen uniformly at random, and the diameter of the graph after n steps all scale as a constant multiplied by log n. We determine the constants for all three cases and prove a central limit theorem for the typical distances. We prove a similar central limit theorem for typical distances in EANs.
Given any two vertices u, v of a random geometric graph G(n, r), denote by dE(u, v) their Euclidean distance and by dE(u, v) their graph distance. The problem of finding upper bounds on dG(u, v) conditional on dE(u, v) that hold asymptotically almost surely has received quite a bit of attention in the literature. In this paper we improve the known upper bounds for values of r=ω(√logn) (that is, for r above the connectivity threshold). Our result also improves the best known estimates on the diameter of random geometric graphs. We also provide a lower bound on dE(u, v) conditional on dE(u, v).