In this paper we characterize the compactness of the commutator   $\left[ b,\,T \right]$  for the singular integral operator on the Morrey spaces
 $\left[ b,\,T \right]$  for the singular integral operator on the Morrey spaces   ${{L}^{p,\lambda }}\left( {{\mathbb{R}}^{n}} \right)$ . More precisely, we prove that if
 ${{L}^{p,\lambda }}\left( {{\mathbb{R}}^{n}} \right)$ . More precisely, we prove that if   $b\,\in \,\text{VMO}\left( {{\mathbb{R}}^{n}} \right)$ , the
 $b\,\in \,\text{VMO}\left( {{\mathbb{R}}^{n}} \right)$ , the   $\text{BMO}\left( {{\mathbb{R}}^{n}} \right)$ -closure of
 $\text{BMO}\left( {{\mathbb{R}}^{n}} \right)$ -closure of   $C_{c}^{\infty }\left( {{\mathbb{R}}^{n}} \right)$ , then
 $C_{c}^{\infty }\left( {{\mathbb{R}}^{n}} \right)$ , then   $\left[ b,\,T \right]$  is a compact operator on the Morrey spaces
 $\left[ b,\,T \right]$  is a compact operator on the Morrey spaces   ${{L}^{p,\lambda }}\left( {{\mathbb{R}}^{n}} \right)$  for
 ${{L}^{p,\lambda }}\left( {{\mathbb{R}}^{n}} \right)$  for   $1\,<\,p\,<\,\infty $  and
 $1\,<\,p\,<\,\infty $  and   $0\,<\,\lambda \,<\,n$ . Conversely, if
 $0\,<\,\lambda \,<\,n$ . Conversely, if   $b\,\in \,\text{BMO}\left( {{\mathbb{R}}^{n}} \right)$  and
 $b\,\in \,\text{BMO}\left( {{\mathbb{R}}^{n}} \right)$  and   $\left[ b,\,T \right]$  is a compact operator on the
 $\left[ b,\,T \right]$  is a compact operator on the   ${{L}^{p,\lambda }}\left( {{\mathbb{R}}^{n}} \right)$  for some
 ${{L}^{p,\lambda }}\left( {{\mathbb{R}}^{n}} \right)$  for some   $p\,\left( 1\,<\,p\,<\,\infty\right)$ , then
 $p\,\left( 1\,<\,p\,<\,\infty\right)$ , then   $b\,\in \,\text{VMO}\left( {{\mathbb{R}}^{n}} \right)$ . Moreover, the boundedness of a rough singular integral operator
 $b\,\in \,\text{VMO}\left( {{\mathbb{R}}^{n}} \right)$ . Moreover, the boundedness of a rough singular integral operator   $T$  and its commutator
 $T$  and its commutator   $\left[ b,\,T \right]$  on
 $\left[ b,\,T \right]$  on   ${{L}^{p,\lambda }}\left( {{\mathbb{R}}^{n}} \right)$  are also given. We obtain a sufficient condition for a subset in Morrey space to be a strongly pre-compact set, which has interest in its own right.
 ${{L}^{p,\lambda }}\left( {{\mathbb{R}}^{n}} \right)$  are also given. We obtain a sufficient condition for a subset in Morrey space to be a strongly pre-compact set, which has interest in its own right.