To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper investigates the asymptotic properties of parameter estimation for the Ewens–Pitman partition with parameters $0\lt\alpha\lt1$ and $\theta\gt-\alpha$. Specifically, we show that the maximum-likelihood estimator (MLE) of $\alpha$ is $n^{\alpha/2}$-consistent and converges to a variance mixture of normal distributions, where the variance is governed by the Mittag-Leffler distribution. Moreover, we show that a proper normalization involving a random statistic eliminates the randomness in the variance. Building on this result, we construct an approximate confidence interval for $\alpha$. Our proof relies on a stable martingale central limit theorem, which is of independent interest.
The Pitman–Yor process is a random discrete measure. The random weights or masses follow the two-parameter Poisson–Dirichlet distribution with parameters 0 < α < 1, θ > -α. The parameters α and θ correspond to the stable and gamma components, respectively. The distribution of atoms is given by a probability η. In this paper we consider the limit theorems for the Pitman–Yor process and the two-parameter Poisson–Dirichlet distribution. These include the law of large numbers, fluctuations, and moderate or large deviation principles. The limiting procedures involve either α tending to 0 or 1. They arise naturally in genetics and physics such as the asymptotic coalescence time for explosive branching process and the approximation to the generalized random energy model for disordered systems.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.