We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Here, we explored the influences of dietary inulin (INU) supplementation on growth performance and intestinal health in a porcine model. Thirty-two male weaned pigs (with an average body weight of 7·10 (sd 0·20) kg) were randomly assigned to four treatments and fed with a basal diet (BD) or BD containing 2·5, 5·0 and 10·0 g/kg INU. After a 21-d trial, pigs were killed for collection of serum and intestinal tissues. We show that INU supplementation had no significant influence on the growth performance in weaned pigs. INU significantly elevated serum insulin-like growth factor-1 concentration but decreased diamine oxidase concentration (P < 0·05). Interestingly, 2·5 and 5·0 g/kg INU supplementation significantly elevated the villus height in jejunum and ileum (P < 0·05). Moreover, 2·5 and 5·0 g/kg INU supplementation also elevated the villus height to crypt depth (V:C) in the duodenum and ileum and improved the distribution and abundance of tight-junction protein zonula occludens-1 in duodenum and ileum epithelium. INU supplementation at 10·0 g/kg significantly elevated the sucrase activity in the ileum mucosa (P < 0·05). INU supplementation decreased the expression level of TNF-α but elevated the expression level of GLUT 2 and divalent metal transporter 1 in the intestinal mucosa (P < 0·05). Moreover, INU increased acetic and butyric acid concentrations in caecum (P < 0·05). Importantly, INU elevated the Lactobacillus population but decreased the Escherichia coli population in the caecum (P < 0·05). These results not only indicate a beneficial effect of INU on growth performance and intestinal barrier functions but also offer potential mechanisms behind the dietary fibre-regulated intestinal health.
The development of digestive organs and the establishment of gut microbiota in pullets play an important role throughout life. This study was conducted to investigate the effects of Bacillus subtilis (BS) on growth performance, intestinal function and gut microbiota in pullets from 0 to 6 weeks of age. Hy-line Brown laying hens (1-day-old, n = 504) were randomly allotted into four diets with a 2 × 2 factorial design: (1) basal diet group (control); (2) antibiotics group (AGP), the basal diet supplemented with 20 mg/kg Bacitracin Zinc and 4 mg/kg Colistin Sulphate; (3) BS group, the basal diet supplemented with 500 mg/kg BS and (4) mixed group, the basal diet supplemented with both AGP and BS. As a result, when BS was considered the main effect, BS addition (1) reduced the feed conversion ratio at 4 to 6 weeks (P < 0.05); (2) decreased duodenal and jejunal crypt depth at 3 weeks; (3) increased the villus height : crypt depth (V : C) ratio in the duodenum at 3 weeks and jejunal villus height at 6 weeks and (4) increased sucrase mRNA expression in the duodenum at 3 weeks as well as the jejunum at 6 weeks, and jejunal maltase and aminopeptidase expression at 3 weeks. When AGP was considered the main effect, AGP supplementation (1) increased the V : C ratio in the ileum at 3 weeks of age; (2) increased sucrase mRNA expression in the duodenum at 3 weeks as well as the ileum at 6 weeks, and increased maltase expression in the ileum. The BS × AGP interaction was observed to affect average daily feed intake at 4 to 6 weeks, and duodenal sucrase and jejunal maltase expression at 3 weeks. Furthermore, dietary BS or AGP addition improved caecal microbial diversity at 3 weeks, and a BS × AGP interaction was observed (P < 0.05) for the Shannon and Simpson indexes. At the genus level, the relative abundance of Lactobacillus was found to be higher in the mixed group at 3 weeks and in the BS group at 6 weeks. Moreover, Anaerostipes, Dehalobacterium and Oscillospira were also found to be dominant genera in pullets with dietary BS addition. In conclusion, BS could improve intestinal morphology and change digestive enzyme relative expression and caecum microbiota, thereby increasing the efficiency of nutrient utilization. Our findings suggested that BS might have more beneficial effects than AGP in the study, which would provide theoretical evidence and new insight into BS application in layer pullets.
The effects of pantothenic acid (PA) and folic acid (FA) addition on digestibility coefficient, ruminal fermentation and urinary purine derivative (PD) excretion in dairy bulls were evaluated. Eight rumen-cannulated Holstein dairy bulls were allocated to a replicated 4 × 4 Latin square design according to a 2 × 2 factorial arrangement. Diets were supplemented with two levels of FA (0 or 8.0 mg/kg dietary dry matter [DM]) and two of PA (0 or 60 mg/kg DM). The PA × FA interaction was not significant for all variables. Both supplements increased DM intake and average daily gain, but decreased a feed conversion ratio. Digestibility of DM, organic matter, crude protein and neutral detergent fibre increased, but ether extract digestibility was unchanged for both supplements. Digestibility of acid detergent fibre only increased with FA supplementation. For both supplements, ruminal pH and ammonia nitrogen (N) decreased, but total volatile fatty acid (VFA) concentration increased. Acetate proportion only increased with FA supplementation. Propionate proportion decreased for both supplements. Consequently, the acetate to propionate ratio increased. For both supplements, activity of xylanase and pectinase, population of Ruminococcus albus, R. flavefaciens, Fibrobacter succinogenes and Ruminobacter amylophilus and total PD excretion increased. Additionally, activity of carboxymethylcellulase, cellobiase, α-amylase and protease, and population of total bacteria, fungi, protozoa, methanogens, Butyrivibrio fibrisolvens and Prevotella ruminicola increased with FA addition. The results suggested that PA and FA supplementation stimulated ruminal microbial growth and enzyme activity, resulting in an increased digestibility coefficient and ruminal total VFA concentration in dairy bulls.
Two experiments were conducted to investigate the effects of dietary supplementation of bacteriophage cocktail, probiotics and a combination of these two supplements on performance and gut health of weanling pigs. In Experiment 1, 150 weaned piglets were randomly allotted to three treatments on the basis of BW. The dietary treatments included a basal diet supplemented with 0 (control), 1.0 and 1.5 g/kg bacteriophage cocktail. Pigs fed 1.0 and 1.5 g/kg bacteriophage product had greater (P<0.05) average daily gain (ADG), apparent total tract digestibility of dry matter from day 22 to 35, ileal Lactobacillus spp., villus height (duodenum and jejunum), and fewer coliforms (ileum) and Clostridium spp. (ileum). In Experiment 2, 200 weaned piglets were randomly allotted to four treatments. Dietary treatments included basal diet, basal diet supplemented with 3.0 g/kg fermented probiotic product (P), 1.0 g/kg bacteriophage cocktail (B) and combination of 1.0 g/kg bacteriophage cocktail and 3.0 g/kg fermented probiotic product. Pigs fed bacteriophage cocktail diets had greater (P<0.05) overall ADG, gain to feed ratio (G : F), fecal score from day 8 to day 21, and pigs fed bacteriophage cocktail diets had fewer coliforms (ileum) Clostridium spp. (ileum and cecum). Probiotics significantly increased G : F, colonization of Lactobacillus spp. in ileum. At day 35, bacteriophage treatment group showed greater (P<0.05) villus height of the duodenum, but a deeper crypt in duodenum. The present results indicate that the bacteriophage cocktail had a potential to enhance the performance and gut health of weanling pigs, however their combination with probiotics did not show an interaction.
The temporal variation in the taxonomic distinctness of biofilm-associated diatom microflora within the colonization process was studied in coastal waters of the Yellow Sea, northern China from May to June 2014. Samples were collected at depths of 1 and 3 m, using glass slides as an artificial substratum. The colonization dynamics of diatom microflora showed similar species composition at both depths. In the young communities (1–7 days), the taxonomic patterns showed high variability compared with those in the mature ones (10 days and more). However, taxonomic distinctness indices at the two depths differed during early stages (e.g. 1–3 days). The taxonomic diversity (Δ) represented a high variability (coefficients of variation >10%) over all colonization periods, whereas the taxonomic distinctness (Δ*), average taxonomic distinctness (Δ+) and variation in taxonomic distinctness (Λ+) showed high stability (coefficients of variation <10%) after 7 days. Based on these findings, we suggest that the exposure time of more than 7 days may be sufficient to identify the taxonomic distinctness of biofilm-associated diatom microflora for both community research and monitoring programmes in marine ecosystems.
In the post-antibiotics era, prebiotics are proposed as alternatives to antibiotic growth promoters in poultry production. The goal of this study was to compare in ovo method of prebiotic delivery with in-water supplementation and with both methods combined (in ovo+in-water) in broiler chickens. Two trials were conducted. Trial 1 was carried out to optimize the doses of two prebiotics, DN (DiNovo®, extract of beta-glucans) and BI (Bi2tos, trans-galactooligosaccharides), for in ovo delivery. The estimated parameters were hatchability and bacteriological status of the newly hatched chicks. Prebiotics were dissolved in 0.2 ml of physiological saline, at the doses: 0.18, 0.88, 3.5 and 7.0 mg/embryo; control group (C) was injected in ovo with 0.2 ml of physiological saline. Trial 2 was conducted to evaluate effects of different prebiotics (DN, BI and raffinose family oligosaccharides (RFO)) delivered in ovo, in-water and in a combined way (in ovo+in-water) on broiler chickens performance. The results of the Trial 1 indicated that the optimal dose of DN and BI prebiotics delivered in ovo, that did not reduce chicks’ hatchability, was 0.88 mg/embryo (DN) and 3.5 mg/embryo (BI). Both prebiotics numerically increased number of lactobacilli and bifidobacteria in chicken feces (P>0.05). In Trial 2, all prebiotics (DN, BI and RFO) significantly increased BW gain compared with the C group (P<0.05), especially during the first 21 days of life. However, feed intake and feed conversion ratio were increased upon prebiotics delivery irrespective of method used. Injection of prebiotics in ovo combined with in-water supplementation did not express synergistic effects on broilers performance compared with in ovo injection only. Taken together, those results confirm that single in ovo prebiotics injection into the chicken embryo can successfully replace prolonged in-water supplementation post hatching.
Research on the olive fruit fly Bactrocera oleae (Rossi) – rearing simplification, insect microflora and transgenic strain evaluation – yielded several findings: (1) incorporation of antibiotics in the adult diet is evidently not needed; (2) colonization appears to be easier when wild adults are collected from the field instead of using mature larvae emerging from field-collected infested olives; (3) a combination of standard solid starter with liquid (no cellulose powder) finisher impregnated in synthetic sponge larval diets was more promising compared with all-liquid diets; (4) molecular analysis revealed extensive differences in bacterial species associated with the fly between laboratory flies and strains from different olive varieties, as well as between strains originating from different seasons of the year; (5) when an enhanced green fluorescent protein transgenic strain was compared with the standard long mass-reared strain, it proved significantly inferior according to all quality control tests applied, i.e. egg production, egg hatch, larval-stage duration, pupal recovery, pupal weight, adult emergence and adult survival. The aforementioned findings are discussed in the context of mass rearing and quality requirements for more successful implementation of the sterile insect technique against this pest.
Inflammatory bowel disease (IBD) is a risk factor for the development of colon cancer. Environmental factors including diet and the microflora influence disease outcome. Folate and homocysteine have been associated with IBD-mediated colon cancer but their roles remain unclear. We used a model of chemically induced ulcerative colitis (dextran sodium sulphate (DSS)) with or without the colon carcinogen azoxymethane (AOM) to determine the impact of dietary folic acid (FA) on colonic microflora and the development of colon tumours. Male mice (n 15 per group) were fed a FA-deficient (0 mg/kg), control (2 mg/kg) or FA-supplemented (8 mg/kg) diet for 12 weeks. Folate status was dependent on the diet (P< 0·001) and colitis-induced treatment (P= 0·04) such that mice with colitis had lower circulating folate. FA had a minimal effect on tumour initiation, growth and progression, although FA-containing diets tended to be associated with a higher tumour prevalence in DSS-treated mice (7–20 v. 0 %, P= 0·08) and the development of more tumours in the distal colon of AOM-treated mice (13–83 % increase, P= 0·09). Folate deficiency was associated with hyperhomocysteinaemia (P< 0·001) but homocysteine negatively correlated with tumour number (r − 0·58, P= 0·02) and load (r − 0·57, P= 0·02). FA had no effect on the intestinal microflora. The present data indicate that FA intake has no or little effect on IBD or IBD-mediated colon cancer in this model and that hyperhomocysteinaemia is a biomarker of dietary status and malabsorption rather than a cause of IBD-mediated colon cancer.
The intestinal microbiome has been the subject of study for many decades because of its importance in the health and well being of animals. The bacterial components of the intestinal microbiome have closely evolved as animals have and in so doing contribute to the overall development and metabolic needs of the animal. The microbiome of the pig has been the subject of many investigations using culture-dependent methods and more recently using culture-independent techniques. A review of the literature is consistent with many of the ecologic principles put forth by Rene Dubos. Animals develop an intestinal microbiome over time and space. During the growth and development of the pig, the microbiome changes in composition in a process known as the microbial succession. There are clear and distinct differences in the composition of the pig intestinal microbiome moving from the proximal end of the intestinal tract to the distal end. The majority (>90%) of the bacteria in the pig intestinal microbiome are from two Phyla: Firmicutes and Bacteroidetes. However, the ileum has a high percentage of bacteria in the phylum Proteobacterium (up to 40%). Perturbations to the microbiome occur in response to many factors including stresses, treatment with antibiotics, and diet.
The use of exogenous enzymes to improve the nutritional value of poultry diets is a relatively new concept. The technology is rapidly evolving, with new enzymes, enzyme combinations, and novel applications being developed as rapidly as regulatory restrictions will allow. Most researchers in the field of poultry nutrition would consider phytase to be the last significant leap forward in terms of enzyme use in the animal feed industry. However, there is a great deal of ongoing research into the next generation of enzymes with a focus on ingredient quality, predictability of response via least-square models, improvements in food safety, effect of bird age, effect of various side activities and enzyme dose, maximisation of net income and reduction in environmental pollution. It is the purpose of the present review article to summarise the current research in the area of feed enzymes for poultry and to speculate on future applications of enzymes and new enzyme technologies that may be of value to the industry in the coming years.
A 2 × 2 factorial experiment was performed to investigate the interaction between a high- and low-crude-protein (CP) diet (200 v. 140 g/kg) and inulin supplementation (0 v. 12.5 g/kg) on nutrient digestibility, nitrogen (N) excretion, intestinal microflora, volatile fatty acid (VFA) concentration and manure ammonia emissions from 24 boars (n = 6, 74.0 kg live weight). The diets were formulated to contain similar concentrations of digestible energy and lysine. Pigs offered the high-CP diets had a higher excretion of urinary N (P < 0.001), faecal N (P < 0.01) and total N (P < 0.001) than the pigs offered the low-CP diets. Inulin supplementation increased faecal N excretion (P < 0.05) and decreased the urine N : faeces N ratio (P < 0.05) compared with the inulin-free diets. There was no effect (P > 0.05) of dietary treatment on N retention. There was an interaction (P < 0.05) between dietary CP concentration and inulin supplementation on caecal Enterobacteria spp. Pigs offered the diet containing 200 g/kg of CP plus inulin decreased the population of Enterobacteria spp. compared to those with the inulin-supplemented 140 g/kg CP diet. However, CP level had no significant effect on the population of Enterobacteria spp. in the unsupplemented diets. Inulin supplementation increased caecal Bifidobacteria (P < 0.01) compared with the inulin-free diets. There was no effect of inulin supplementation on VFA concentration or intestinal pH (P > 0.05). Pigs offered the 200 g/kg CP diets had higher (P < 0.05) manure ammonia emissions from 0 to 240 h of storage than pigs offered the 140 g/kg CP. In conclusion, inulin supplementation resulted in an increase in Bifidobacteria concentration and a reduction in Enterobacteria spp. at the high CP level indicating that inulin has the ability to beneficially manipulate gut microflora in a proteolytic environment.
Diarrhoea is a common and serious complication of enteral tube feeding. Its pathogenesis involves antibiotic prescription, enteropathogenic colonization and abnormal colonic responses, all of which involve an interaction with the colonic microbiota. Alterations in the colonic microbiota have been identified in patients receiving enteral tube feeding and these changes may be associated with the incidence of diarrhoea. Preventing negative alterations in the colonic microbiota has therefore been investigated as a method of reducing the incidence of diarrhoea. Probiotics and prebiotics may be effective because of their suppression of enteropathogenic colonization, stimulation of immune function and modulation of colonic metabolism. Randomized controlled trials of probiotics have produced contrasting results, although Saccharomyces boulardii has been shown to reduce the incidence of diarrhoea in patients in the intensive care unit receiving enteral tube feeding. Prebiotic fructo-oligosaccharides have been shown to increase the concentration of faecal bifidobacteria in healthy subjects consuming enteral formula, although this finding has not yet been confirmed in patients receiving enteral tube feeding. Furthermore, there are no clinical trials investigating the effect of a prebiotic alone on the incidence of diarrhoea. Further trials of the efficacy of probiotics and prebiotics, alone and in combination, in preventing diarrhoea in this patient group are warranted.
The immediate post-weaning period is often associated with gut malfunction and diarrhoea for young pigs. Administration of antimicrobials remains an effective way to control weaning diarrhoea but it remains unclear how they affect gut physiology and microbiology although this is a prerequisite for being able to devise better alternatives. Hence, for 7 d we treated pigs, weaned at 24 d of age, with a combination of amoxicillin (25 mg/kg feed and injection of 8·75 mg/kg body weight per 12 h) and ZnO (2·5 g/kg feed). The pigs treated with antimicrobials (n 11) showed no signs of gut malfunction at any time, whereas untreated weaned controls (n 11) developed clinical diarrhoea. The antimicrobial treatment resulted in a higher daily weight gain compared with weaned controls (101 v. − 44 g/d, P < 0·0001), whereas both groups had a similar degree of villous atrophy compared with unweaned 24-d-old controls (n 8; P < 0·05). The antimicrobial treatment gave a dramatic reduction in small intestinal microbial diversity, and specifically prevented tissue colonization with Escherichia coli compared with weaned controls. Further, the antimicrobial treatment improved amylase, trypsin and small intestinal aminopeptidase A and N activities (all P < 0·05). Specifically for the colon, the antimicrobial treatment was associated with reduced tissue weight ( − 23 %, P < 0·05), reduced concentration of SCFA (P < 0·05), and increased mucosal goblet cell area (P < 0·0001) compared with weaned controls. We conclude that the beneficial effects of antimicrobials are mediated not only through reduction in intestinal bacterial load, but also through a stimulation of protein digestive function and goblet cell density.
Enteral tube feeding is common in both the hospital and community environment; however, patients can suffer alterations in faecal output that can have serious clinical sequelae. Problems associated with accurate characterisation of faecal output and definition of diarrhoea impede the comparison of research studies and prevent standardised assessment of therapeutic interventions in clinical practice. The colonic microflora may protect the patient against diarrhoea by preventing enteropathogenic infection and by producing SCFA that stimulate colonic water absorption. However, studies in healthy volunteers suggest that the composition of the enteral formula may have a negative impact on the microflora and SCFA concentrations. The addition of fructo-oligosaccharides to the enteral formula may partially prevent negative alterations to the microflora, although conclusive data from studies in patients are not yet available. Modification of the microflora with probiotics and prebiotics may hold potential in prophylaxis against diarrhoea during enteral tube feeding.
There is very little evidence for the effects of dietary fibre in young children and current dietary guidelines are based on assumptions and data extrapolated from studies in adults. The first years of life may be critical for the establishment of a healthy colonic microflora, as well as good eating habits. The lack of clear and well-founded guidelines for the intake of dietary fibre in childhood may hinder both factors. The fears that a high-fibre diet in children <5 years of age will lead to growth faltering and mineral imbalance are not well supported in the literature, especially for children in the developed world. Indeed, with the rising levels of obesity, fibre intake may be of benefit in reducing energy intake. A low-fibre diet may also be implicated in the aetiology of childhood constipation and appendicitis. The latest proposals for the definition of dietary fibre include oligosaccharides, which may act as prebiotics. There are potential health benefits of including oligosaccharides in the diets of infants and children, but more research is needed to consider the long-term effects. The immature intestine of the infant may also result in a greater amount of starch entering the colon during weaning, and this starch would now be considered dietary fibre under the new definitions. Much new research is needed to allow adequate recommendations for the intake of dietary fibre in childhood based on data collected in appropriate age-groups.
Pregnancy is associated with a skewing towards T-helper (Th)2-like cell populations. During the first years of life, the neonatal immune responses towards allergens deviate towards a balanced Th1 and Th2-like immunity. The difference between atopic and nonatopic individuals may be how readily the immune deviation takes place. The high prevalence of allergies in industrialized countries is in contrast with the low prevalence of allergies in Eastern Europe, with a life style similar to that prevailing in Western Europe 40 years ago. The discussion on the impact of environmental changes on the incidence of asthma and other allergies has been limited mostly to the possible effects of a deteriorating air quality, poorly ventilated houses and an increased exposure to certain allergens, notably house dust mites. None of these factors can more than marginally explain the observed regional differences in the prevalence of allergic diseases. The concept of ‘life style’ should therefore be expanded considerably. The mother is a significant ‘environmental factor’ in early infancy. Human milk contains components that enhance the maturation of the immune system of the newborn infant. However, there are considerable individual variations in the composition of human milk. Recent studies indicate an imbalance in the gut flora of allergic, compared with non allergic infants, and in Swedish children compared with Estonian children. As the microbial flora drives the maturation of the immune system, changes in its composition may play a role for the higher prevalence of allergy. The future search for significant environmental factors should be directed towards other areas that have not yet been explored. The intestinal microflora is one of these factors that deserve a closer analysis.
Germination of native tree and shrub species from seed can be unpredictable. Germination of Rosa corymbifera ‘Laxa’ was 2% under normal commercial conditions. This was obtained in the presence of the natural microflora found on the seeds. The microflora originated on the hips and the seeds become inoculated during extraction. Exclusion of microbes from such pretreatments resulted in no germination. Inoculation of surface sterilized seeds with members of the natural microflora resulted in 3% germination. The addition of GarottaTM, a commercial compost activator, to the commercial pretreatment increased germination to 95%. This high germination percentage was sustained over a 5 year period using seeds from the same stock bushes. Addition of the compost activator resulted in a 20-fold increase of microbial activity in the pretreatment mixture, indicating that enhanced microbial growth resulted in higher and more predictable germination percentages.
The microflora of the digestive tract of poultry is still incompletely known. Microbial populations of varying size and complexity occur throughout the digestive tract and the highest and most complex floras are found in the crop and the caeca. The upper part of the digestive tract is predominantly settled by facultative anaerobes, whereas the caeca are mainly the site of obligate anaerobes. The types, numbers and metabolic activities of the organisms are affected by numerous factors such as individual, animal age, environment, and diet. Bacteria produce various metabolites that can be useful or detrimental to the host. Interactions between bacteria and the gastrointestinal epithelium lead to various structural and functional modifications of the digestive tract. Bacteria can impair lipid digestion and may modify carbohydrate and protein digestion. They cause an increase in energy and amino acid requirements. They have a negative effect on vitamin nutrition. Beneficial bacteria can protect birds against pathogens through a competitive exclusion process. Moreover, the flora is involved in the development of the intestinal immune system. Overall, bacteria have a negative effect on bird growth. They may also have an effect on meat and egg quality. Improved knowledge of the microflora of the digestive tract and its consequences may contribute to its control and beneficial use for birds as well as breeders, consumers and the environment.
The commercial application of enzymes as a feed additive has a history of less than 20 years. During this period, the feed enzyme industry came into existence and it has gone through several phases of development. The first phase was the use of enzymes to enhance nutrient digestibility, focusing primarily on removing the anti-nutritive effects of non-starch polysaccharides (NSP), such as arabinoxylans and β-glucans, from broiler diets based on viscous grains like wheat, rye, barley or triticale. During the early 1990s, the scope of enzyme application expanded to consider nutrients other than NSP and benefits other than digestibility enhancement. Phytase is a prime example, where not only was it used to increase the utilisation of phtate P, but also to alleviate environmental burdens by reducing P excretion in the excreta. The industry then started to advocate enzyme addition to poultry diets based on non-viscous grains, such as sorghum and corn. Although such a use is not uncommon in some parts of the world, the industry is still in search for highly efficacious enzymes for non-viscous cereal grains. The next phase is the application of enzymes to non-cereal grain components of the diet. These vegetable protein sources are often high in NSP, which are poorly characterised in regard to their molecular structures. Significant progress has been made on characterisation of the NSP in soyabean, but the industry has not been able to produce commercially viable products that consistently improve the digestibility of vegetable protiens. The enzyme industry today is constantly searching for new areas of application. Some recent data demonstrate the role of glycanases (charbohydrate degrading enzymes) as an alternative to in-feed antibiotics. It is possible to produce enzymes tailored for (a) the generation of specific low molecular weight carbohydrates in vivo, which, in turn, produce specific health outcomes in birds; (b) de-activation of anti-nutrients other than NSP and phtate, and (c) degrading of non-conventional feed resources to yield ME. The development of enzyme technology needs to go hand in hand with better characterisation of substrate structures, the gut microflora, and the immune system.
Toll-like receptors (TLRs) play a principle role in distinct pathogen recognition and in the initiation of innate immune responses of the intestinal mucosa. Activated innate immunity interconnects downstream with adaptive immunity in complex feedback regulatory loops. Intestinal disease might result from inappropriate activation of the mucosal immune system driven by TLRs in response to normal luminal flora.