To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
If $f=u+iv$ is analytic in the unit disk ${\mathbb D}$, it is known that the integral means $M_p(r,u)$ and $M_p(r,v)$ have the same order of growth. This is false if f is a (complex-valued) harmonic function. However, we prove that the same principle holds if we assume, in addition, that f is K-quasiregular in ${\mathbb D}$. The case $0<p<1$ is particularly interesting, and is an extension of the recent Riesz-type theorems for harmonic quasiregular mappings by several authors. Further, we proceed to show that the real and imaginary parts of a harmonic quasiregular mapping have the same degree of smoothness on the boundary.
Let G be a torsion-free, finitely generated, nilpotent and metabelian group. In this work, we show that G embeds into the group of orientation-preserving $C^{1+\alpha }$-diffeomorphisms of the compact interval for all $\alpha < 1/k$, where k is the torsion-free rank of $G/A$ and A is a maximal abelian subgroup. We show that, in many situations, the corresponding $1/k$ is critical in the sense that there is no embedding of G with higher regularity. A particularly nice family where this happens is the family of $(2n+1)$-dimensional Heisenberg groups, for which we can show that the critical regularity is equal to $1+1/n$.
This article deals with kinetic Fokker–Planck equations with essentially bounded coefficients. A weak Harnack inequality for nonnegative super-solutions is derived by considering their log-transform and adapting an argument due to S. N. Kružkov (1963). Such a result rests on a new weak Poincaré inequality sharing similarities with the one introduced by W. Wang and L. Zhang in a series of works about ultraparabolic equations (2009, 2011, 2017). This functional inequality is combined with a classical covering argument recently adapted by L. Silvestre and the second author (2020) to kinetic equations.
We improve a recent construction of Andrés Navas to produce the first examples of $C^2$-undistorted diffeomorphisms of the interval that are $C^{1+\alpha }$-distorted (for every ${\alpha < 1}$). We do this via explicit computations due to the failure of an extension to class $C^{1+\alpha }$ of a classical lemma related to the work of Nancy Kopell.
It is well known that the height profile of a critical conditioned Galton–Watson tree with finite offspring variance converges, after a suitable normalisation, to the local time of a standard Brownian excursion. In this work, we study the distance profile, defined as the profile of all distances between pairs of vertices. We show that after a proper rescaling the distance profile converges to a continuous random function that can be described as the density of distances between random points in the Brownian continuum random tree. We show that this limiting function a.s. is Hölder continuous of any order $\alpha<1$, and that it is a.e. differentiable. We note that it cannot be differentiable at 0, but leave as open questions whether it is Lipschitz, and whether it is continuously differentiable on the half-line $(0,\infty)$. The distance profile is naturally defined also for unrooted trees contrary to the height profile that is designed for rooted trees. This is used in our proof, and we prove the corresponding convergence result for the distance profile of random unrooted simply generated trees. As a minor purpose of the present work, we also formalize the notion of unrooted simply generated trees and include some simple results relating them to rooted simply generated trees, which might be of independent interest.
By a general shot noise process we mean a shot noise process in which the counting process of shots is arbitrary locally finite. Assuming that the counting process of shots satisfies a functional limit theorem in the Skorokhod space with a locally Hölder continuous Gaussian limit process, and that the response function is regularly varying at infinity, we prove that the corresponding general shot noise process satisfies a similar functional limit theorem with a different limit process and different normalization and centering functions. For instance, if the limit process for the counting process of shots is a Brownian motion, then the limit process for the general shot noise process is a Riemann–Liouville process. We specialize our result for five particular counting processes. Also, we investigate Hölder continuity of the limit processes for general shot noise processes.
In this paper, a Chebyshev-collocation spectral method is developed for Volterra integral equations (VIEs) of second kind with weakly singular kernel. We first change the equation into an equivalent VIE so that the solution of the new equation possesses better regularity. The integral term in the resulting VIE is approximated by Gauss quadrature formulas using the Chebyshev collocation points. The convergence analysis of this method is based on the Lebesgue constant for the Lagrange interpolation polynomials, approximation theory for orthogonal polynomials, and the operator theory. The spectral rate of convergence for the proposed method is established in the L∞-norm and weighted L2-norm. Numerical results are presented to demonstrate the effectiveness of the proposed method.
We discuss the problem of the regularity-in-time of the map t ↦ Tt ∊ Lp(ℝd, ℝd; σ), where Tt is a transport map (optimal or not) from a reference measure σ to a measure μt which lies along an absolutely continuous curve t ↦ μt in the space (). We prove that in most cases such a map is no more than 1/p-Hölder continuous.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.