We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study aimed to investigate the effects of physical multimorbidity on the trajectory of cognitive decline over 17 years and whether vary across wealth status. The study was conducted in 9035 respondents aged 50+ at baseline from nine waves (2002–2019) of the English Longitudinal Study of Aging. A latent class analysis was used to identify patterns of physical multimorbidity, and mixed multilevel models were performed to determine the association between physical multimorbidity and trajectories of cognitive decline. Joint analyses were conducted to further verify the influence of wealth status. Four patterns of physical multimorbidity were identified. Mixed multilevel models with quadratic terms of time and status/patterns indicated significant non-linear trajectories of multimorbidity on cognitive function. The magnitude of the association between complex multisystem patterns and cognitive decline increased the most as follow-up progressed. Individuals with high wealth and hypertension/diabetes patterns have significantly lower composite global cognitive z scores over time as compared with respiratory/osteoporosis patterns. Physical multimorbidity at baseline is associated with the trajectory of cognitive decline, and the magnitude of the association increased over time. The trend of cognitive decline differed in specific combinations of wealth status and physical multimorbidity.
Summary: The aging of the population poses significant challenges in healthcare, necessitating innovative approaches. Advancements in brain imaging and artificial intelligence now allow for characterizing an individual’s state through their brain age,’’ derived from observable brain features. Exploring an individual’s biological age’’ rather than chronological age is becoming crucial to identify relevant clinical indicators and refine risk models for age-related diseases. However, traditional brain age measurement has limitations, focusing solely on brain structure assessment while neglecting functional efficiency.
Our study focuses on developing neurocognitive ages’’ specific to cognitive systems to enhance the precision of decline estimation. Leveraging international (NKI2, ADNI) and Canadian (CIMA- Q, COMPASS-ND) databases with neuroimaging and neuropsychological data from older adults [control subjects with no cognitive impairment (CON): n = 1811; people living with mild cognitive impairment (MCI): n = 1341; with Alzheimer’s disease (AD): n= 513], we predicted individual brain ages within groups. These estimations were enriched with neuropsychological data to generate specific neurocognitive ages. We used longitudinal statistical models to map evolutionary trajectories. Comparing the accuracy of neurocognitive ages to traditional brain ages involved statistical learning techniques and precision measures.
The results demonstrated that neurocognitive age enhances the prediction of individual brain and cognition change trajectories related to aging and dementia. This promising approach could strengthen diagnostic reliability, facilitate early detection of at-risk profiles, and contribute to the emergence of precision gerontology/geriatrics.
It remains uncertain whether long-term use of benzodiazepines is associated with age-related cognitive decline, and if cognitive ability in early life is the driver of any association. This study examines the association of cognitive ability in young adulthood with later use of benzodiazepines and explores whether the use of benzodiazepines during adult life is associated with cognitive decline in late midlife.
Methods
The study samples include cognitive tests on the Børge Priens Prøve (BPP) from the conscription board examination (age 19 years) from 335 513 men born 1949–1961 and data from re-examinations of 5183 men 44 years later. Cognitive decline was defined as the difference between scores at the conscription board and the re-examination. Information on purchases of benzodiazepines was obtained from the Danish National Prescription Registry, 1995–2022. Associations were analysed using Cox proportional hazards and linear regression.
Results
In total, 120 911 (36%) men purchased benzodiazepines during a follow-up of 20 years. Lower cognitive scores in young adulthood were associated with a higher risk of initiating benzodiazepines (hazard ratio [95% CI] = 0.71[0.68–0.75]). Men with the highest cumulative use of benzodiazepines had larger cognitive decline (β-coefficient [95% CI] = −1.66 [−2.09 to −1.23] BPP scores) compared with never users. Current benzodiazepine users showed a larger cognitive decline than never users (β-coefficient [95% CI] = −2.42[−3.18 to −1.66] BPP scores) and this partially explained the above association. These estimates for cognitive decline were relatively small and may lack clinical relevance.
Conclusion
Low cognitive ability increases the risk of benzodiazepine use in adulthood and cognitive decline is more pronounced in those with the highest benzodiazepine use compared with never-use, but the difference lacks clinical significance.
To determine whether poorer performance on the Boston Naming Test (BNT) in individuals with transactive response DNA-binding protein 43 pathology (TDP-43+) is due to greater loss of word knowledge compared to retrieval-based deficits.
Methods:
Retrospective clinical-pathologic study of 282 participants with Alzheimer’s disease neuropathologic changes (ADNC) and known TDP-43 status. We evaluated item-level performance on the 60-item BNT for first and last available assessment. We fit cross-sectional negative binomial count models that assessed total number of incorrect items, number correct of responses with phonemic cue (reflecting retrieval difficulties), and number of “I don’t know” (IDK) responses (suggestive of loss of word knowledge) at both assessments. Models included TDP-43 status and adjusted for sex, age, education, years from test to death, and ADNC severity. Models that evaluated the last assessment adjusted for number of prior BNT exposures.
Results:
43% were TDP-43+. The TDP-43+ group had worse performance on BNT total score at first (p = .01) and last assessments (p = .01). At first assessment, TDP-43+ individuals had an estimated 29% (CI: 7%–56%) higher mean number of incorrect items after adjusting for covariates, and a 51% (CI: 15%–98%) higher number of IDK responses compared to TDP-43−. At last assessment, compared to TDP-43−, the TDP-43+ group on average missed 31% (CI: 6%–62%; p = .01) more items and had 33% more IDK responses (CI: 1% fewer to 78% more; p = .06).
Conclusions:
An important component of poorer performance on the BNT in participants who are TDP-43+ is having loss of word knowledge versus retrieval difficulties.
Post-traumatic stress disorder (PTSD) is associated with cognitive impairments. It is unclear whether problems persist after PTSD symptoms remit.
Methods
Data came from 12 270 trauma-exposed women in the Nurses' Health Study II. Trauma and PTSD symptoms were assessed using validated scales to determine PTSD status as of 2008 (trauma/no PTSD, remitted PTSD, unresolved PTSD) and symptom severity (lifetime and past-month). Starting in 2014, cognitive function was assessed using the Cogstate Brief Battery every 6 or 12 months for up to 24 months. PTSD associations with baseline cognition and longitudinal cognitive changes were estimated by covariate-adjusted linear regression and linear mixed-effects models, respectively.
Results
Compared to women with trauma/no PTSD, women with remitted PTSD symptoms had a similar cognitive function at baseline, while women with unresolved PTSD symptoms had worse psychomotor speed/attention and learning/working memory. In women with unresolved PTSD symptoms, past-month PTSD symptom severity was inversely associated with baseline cognition. Over follow-up, both women with remitted and unresolved PTSD symptoms in 2008, especially those with high levels of symptoms, had a faster decline in learning/working memory than women with trauma/no PTSD. In women with remitted PTSD symptoms, higher lifetime PTSD symptom severity was associated with a faster decline in learning/working memory. Results were robust to the adjustment for sociodemographic, biobehavioral, and health factors and were partially attenuated when adjusted for depression.
Conclusion
Unresolved but not remitted PTSD was associated with worse cognitive function assessed six years later. Accelerated cognitive decline was observed among women with either unresolved or remitted PTSD symptoms.
Older brain age – as estimated from structural MRI data – is known to be associated with detrimental mental and physical health outcomes in older adults. Social isolation, which has similar detrimental effects on health, may be associated with accelerated brain aging though little is known about how different trajectories of social isolation across the life course moderate this association. We examined the associations between social isolation trajectories from age 5 to age 38 and brain age assessed at age 45.
Methods
We previously created a typology of social isolation based on onset during the life course and persistence into adulthood, using group-based trajectory analysis of longitudinal data from a New Zealand birth cohort. The typology comprises four groups: ‘never-isolated’, ‘adult-only’, ‘child-only’, and persistent ‘child-adult’ isolation. A brain age gap estimate (brainAGE) – the difference between predicted age from structural MRI date and chronological age – was derived at age 45. We undertook analyses of brainAGE with trajectory group as the predictor, adjusting for sex, family socio-economic status, and a range of familial and child-behavioral factors.
Results
Older brain age in mid-adulthood was associated with trajectories of social isolation after adjustment for family and child confounders, particularly for the ‘adult-only’ group compared to the ‘never-isolated’ group.
Conclusions
Although our findings are associational, they indicate that preventing social isolation, particularly in mid-adulthood, may help to avert accelerated brain aging associated with negative health outcomes later in life.
Modifiable lifestyle factors, such as improved nutrition, are crucial in maintaining cognitive health in older age. Fruit and vegetables represent healthy and sustainable sources of nutrients with the potential to prevent age-related cognitive decline. The aim of this review is to synthesise the available evidence, from epidemiological and randomised controlled trials (RCT), regarding the role of fruit and vegetables in sustaining healthy cognitive function. Epidemiological studies of combined fruit and vegetable intake suggest that increased consumption may sustain cognition in later life. The evidence appears to be stronger for an association between vegetables and cognition, particularly for green leafy and cruciferous vegetables. Specific benefits shown for berries, citrus fruits, avocado and nuts suggest fruit is worthy of further investigation in relation to cognition. Data from RCT indicate benefits to differing aspects of cognition following citrus and berry fruits, cocoa and peanuts, but the data are limited and there are a lack of studies exploring effects of vegetables. There is growing evidence for an association between fruit and vegetable intake and cognitive function, but this is not always consistent and the data from RCT are limited. Issues in previous research are highlighted, such as strict exclusion criteria, absence of baseline nutritional status data and lack of consideration of individual differences, which may explain the weaker findings from RCT. Inclusion of those most at risk for cognitive decline is recommended in future nutrition and cognition research.
Age-related frailty and cognitive decline are complex multidimensional conditions that significantly impact the ability of older adults to sustain functional capacity and independence. While underlying causes remain poorly understood, nutrition continually emerges as one associated risk element. Many studies have addressed the importance of adequate nutrition in delaying the onset of these conditions, but the specific role of micronutrients is not well established. The consideration of pre-frailty as an outcome variable is also limited in the current literature. In this review, we focus on the potential value of maintaining micronutrient sufficiency to sustaining the health of the ageing population. Using data from the Irish longitudinal study on ageing, we consider several vitamins known to have a high prevalence of low status in older adults and their impact on pre-frailty, frailty and cognitive impairment. They include vitamin B12 and folate, both of which are associated with multiple biological mechanisms involved in long-term health, in particular in cognitive function; vitamin D, which has been associated with increased risk of musculoskeletal disorders, depression and other chronic diseases; and the carotenoids, lutein and zeaxanthin, that may help mitigate the risk of frailty and cognitive decline via their antioxidant and anti-inflammatory properties. We show that low concentrations of folate and carotenoids are implicated in poorer cognitive health and that the co-occurrence of multiple nutrient deficiencies confers greatest risk for frailty and pre-frailty in the Irish longitudinal study on ageing cohort. These health associations contribute to evidence needed to optimise micronutrient status for health in the older adult population.
Studies have shown that cognitive behavioural therapy (CBT) for older people with cognitive decline and depression/anxiety improves negative moods. However, CBT research focusing on this population in Japan is limited. This study aimed to evaluate the feasibility of a cognitive behavioural program for people with cognitive decline. Sixteen Japanese patients with mild dementia (n = 3) and mild cognitive impairment (MCI, n = 13) participated in the study. A single-arm, pre–post study was implemented in two hospitals in Japan. The CBT program included eight bi-weekly sessions. The feasibility outcomes (satisfaction, understanding and usefulness) were measured immediately after completing the sessions, and depression, anxiety, quality of life (QOL), neuropsychiatric symptoms, and caregiver burden were measured at three time points (i.e. before, immediately after, and 3-month follow-up). Ten MCI participants attended all sessions and the mean patient satisfaction scores using the Client Satisfaction Questionnaire were 31.0±10.05 out of 32. Linear mixed model analyses demonstrated that the time effect was significant for depression (d = 1.62), anxiety (d = 1.39), and QOL (d = 1.00) for the patients, and significant for anxiety (d = 1.08) for their caregivers. The study found that this CBT program is feasible and acceptable for older Japanese people with cognitive decline. The program also improved patients’ QOL, anxiety and depressive symptoms, and decreased caregivers’ anxiety.
Key learning aims
(1) Recently, studies have shown that CBT for older people living with dementia has been effective in treating their depression and anxiety. However, evidence for the efficacy of CBT and other curative or care options for people living with dementia is limited in Japan.
(2) We studied a short-period CBT program and found that it was likely to be feasible and acceptable for use among older Japanese people with mild cognitive impairment, that it may improve negative mood among this group, and that it may lessen the care burden for caregivers.
(3) Furthermore, we found that caregiver involvement in the implementation of CBT for older people may be effective in improving the mood of family members.
As we continue to elucidate the mechanisms underlying age-related brain diseases, the reductionist strategy in nutrition–brain function research has focused on establishing the impact of individual foods. However, the biological processes connecting diet and cognition are complex. Therefore, consideration of a combination of nutritional compounds may be most efficacious. One barrier to establishing the efficacy of multi-nutrient interventions is that the area lacks an established set of evidence-based guidelines for studying their effect on brain health. This review is an output of the International Life Sciences Institute (ILSI) Europe. A multi-disciplinary expert group was assembled with the aim of developing a set of considerations to guide research into the effects of multi-nutrient combinations on brain functions. Consensus recommendations converged on six key issues that should be considered to advance research in this area: (1) establish working mechanisms of the combination and contributions of each individual compound; (2) validate the relevance of the mechanisms for the targeted human condition; (3) include current nutrient status, intake or dietary pattern as inclusion/exclusion criteria in the study design; (4) select a participant population that is clinically and biologically appropriate for all nutritional components of the combination; (5) consider a range of cognitive outcomes; (6) consider the limits of reductionism and the ‘gold standard’ randomised controlled trial. These guiding principles will enhance our understanding of the interactive/complementary activities of dietary components, thereby strengthening the evidence base for recommendations aimed at delaying cognitive decline.
Serial position scores on verbal memory tests are sensitive to early Alzheimer’s disease (AD)-related neuropathological changes that occur in the entorhinal cortex and hippocampus. The current study examines longitudinal change in serial position scores as markers of subtle cognitive decline in older adults who may be in preclinical or at-risk states for AD.
Methods:
This study uses longitudinal data from the Religious Orders Study and the Rush Memory and Aging Project. Participants (n = 141) were included if they did not have dementia at enrollment, completed follow-up assessments, and died and were classified as Braak stage I or II. Memory tests were used to calculate serial position (primacy, recency), total recall, and episodic memory composite scores. A neuropathological evaluation quantified AD, vascular, and Lewy body pathologies. Mixed effects models were used to examine change in memory scores. Neuropathologies and covariates (age, sex, education, APOE e4) were examined as moderators.
Results:
Primacy scores declined (β = −.032, p < .001), whereas recency scores increased (β = .021, p = .012). No change was observed in standard memory measures. Greater neurofibrillary tangle density and atherosclerosis explained 10.4% of the variance in primacy decline. Neuropathologies were not associated with recency change.
Conclusions:
In older adults with hippocampal neuropathologies, primacy score decline may be a sensitive marker of early AD-related changes. Tangle density and atherosclerosis had additive effects on decline. Recency improvement may reflect a compensatory mechanism. Monitoring for changes in serial position scores may be a useful in vivo method of tracking incipient AD.
Adverse childhood experiences (ACEs) have been associated with numerous health consequences in adulthood including cognitive decline. However, the underlying mechanisms implicated remain unclear.
Objectives
In this study, depressive symptoms and systemic inflammation were investigated as potential independent mediators of the association between ACEs and cognitive decline.
Methods
Participants were adults aged 50+ from the English Longitudinal Study of Ageing (N = 3,029; 54.8% female). Measures included self-reported ACEs at wave 3 (2006-2007), C-reactive protein (CRP) and depressive symptoms at wave 4 (2008-2009), and cognitive function at waves 3 and 7 (2014-2015). Mediation analyses examined the direct associations between ACEs and cognitive function at wave 7 and the indirect associations via depressive symptoms and CRP at wave 4 and were conducted using ordinary least squares regression models with the SPSS PROCESS macro. In Step 1, models were adjusted for sociodemographic factors and baseline cognitive function. Models in Step 2 were additionally adjusted for obesity and health behaviours (n = 1,874).
Results
Cumulative ACEs exposure was shown to positively predict later-life depressive symptoms, which in turn predicted cognitive decline. ACEs were also shown to positively predict systemic inflammation as measured by CRP. However, CRP did not mediate the association between ACEs and cognitive decline.
Conclusions
These findings suggest that ACEs are related to cognitive decline partly via depressive symptoms and corroborate prior research linking ACEs with adult systemic inflammation. Efforts towards screening for, preventing, and mitigating the effects of ACEs may therefore represent an important avenue for improving health outcomes in later life.
Brain infarction due to cerebral small vessel disease (SVD) accounts for up to 25% of all ischemic strokes. CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) and CARASIL (cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy) are among the monogenic hereditary cerebral SVDs. Herein, we reported a case of sporadic CADASIL-like disease and provided information about CADASIL and CARASIL, two of the most common of inheredited SVDs that are usually overlooked
To evaluate whether cerebrospinal fluid biomarkers, apolipoprotein e4, neuroimaging abnormalities, and neuropsychological data differentially predict progression from mild cognitive impairment (MCI) to dementia for men and women.
Methods:
Participants who were diagnosed with MCI at baseline (n = 449) were classified as either progressing to Alzheimer’s dementia at follow-up or as not progressing. Men and women were first compared using bivariate analyses. Sex-stratified Cox proportional hazard regressions were performed examining the relationship between baseline data and the likelihood of progressing to dementia. Sex interactions were subsequently examined.
Results:
Cox proportional hazard regression controlling for age and education indicated that all variables significantly predicted subsequent progression to dementia for men and women. Sex interactions indicated that only Rey Auditory Verbal Learning Test (RAVLT) delayed recall and Functional Activities Questionnaire (FAQ) were significantly stronger risk factors for women. When all variables were entered into a fully adjusted model, significant risk factors for women were Aβ42, hippocampal volume, RAVLT delayed recall, Boston Naming Test, and FAQ. In contrast, for men, Aβ42, p-tau181, p-tau181/Aβ42, hippocampal volume, category fluency and FAQ were significant risk factors. Interactions with sex were only significant for p-tau181/Aβ42 and RAVLT delayed recall for the fully adjusted model.
Conclusions:
Men and women with MCI may to differ for which factors predict subsequent dementia although future analyses with greater power are needed to evaluate sex differences. We hypothesize that brain and cognitive reserve theories may partially explain these findings.
The five times sit-to-stand test (FTSS) is an established functional test, used clinically as a measure of lower-limb strength, endurance and falls risk. We report a novel method to estimate and classify cognitive function, balance impairment and falls risk using the FTSS and body-worn inertial sensors. 168 community dwelling older adults received a Comprehensive Geriatric Assessment which included the Mini-Mental State Examination (MMSE) and the Berg Balance Scale (BBS). Each participant performed an FTSS, with inertial sensors on the thigh and torso, either at home or in the clinical environment. Adaptive peak detection was used to identify phases of each FTSS from torso or thigh-mounted inertial sensors. Features were then extracted from each sensor to quantify the timing, postural sway and variability of each FTSS. The relationship between each feature and MMSE and BBS was examined using Spearman’s correlation. Intraclass correlation coefficients were used to examine the intra-session reliability of each feature. A Poisson regression model with an elastic net model selection procedure was used to estimate MMSE and BBS scores, while logistic regression and sequential forward feature selection was used to classify participants according to falls risk, cognitive decline and balance impairment. BBS and MMSE were estimated using cross-validation with low root mean squared errors of 2.91 and 1.50, respectively, while the cross-validated classification accuracies for balance impairment, cognitive decline, and falls risk were 81.96, 72.71, and 68.74%, respectively. The novel methods reported provide surrogate measures which may have utility in remote assessment of physical and cognitive function.
How does change occur in healthcare settings? In this paper, we take a design-based approach to healthcare research. From researcher-patient interactions to information sharing between practitioners, we examine how clinical research can mediate a change of routines and illuminate potential new system structures. Using a hospital-based cognitive care clinic as an example, we demonstrate how the inclusion of new actors, tools and resources was able to shed light on the prevalence of hearing loss among mild cognitive impairment (MCI) patients and lay the framework for new care pathways.
To determine associations of alcohol use with cognitive aging among middle-aged men.
Method:
1,608 male twins (mean 57 years at baseline) participated in up to three visits over 12 years, from 2003–2007 to 2016–2019. Participants were classified into six groups based on current and past self-reported alcohol use: lifetime abstainers, former drinkers, very light (1–4 drinks in past 14 days), light (5–14 drinks), moderate (15–28 drinks), and at-risk drinkers (>28 drinks in past 14 days). Linear mixed-effects regressions modeled cognitive trajectories by alcohol group, with time-based models evaluating rate of decline as a function of baseline alcohol use, and age-based models evaluating age-related differences in performance by current alcohol use. Analyses used standardized cognitive domain factor scores and adjusted for sociodemographic and health-related factors.
Results:
Performance decreased over time in all domains. Relative to very light drinkers, former drinkers showed worse verbal fluency performance, by –0.21 SD (95% CI –0.35, –0.07), and at-risk drinkers showed faster working memory decline, by 0.14 SD (95% CI 0.02, –0.20) per decade. There was no evidence of protective associations of light/moderate drinking on rate of decline. In age-based models, light drinkers displayed better memory performance at advanced ages than very light drinkers (+0.14 SD; 95% CI 0.02, 0.20 per 10-years older age); likely attributable to residual confounding or reverse association.
Conclusions:
Alcohol consumption showed minimal associations with cognitive aging among middle-aged men. Stronger associations of alcohol with cognitive aging may become apparent at older ages, when cognitive abilities decline more rapidly.
Alzheimer’s disease (AD) is highly heritable, and AD polygenic risk scores (AD-PRSs) have been derived from genome-wide association studies. However, the nature of genetic influences very early in the disease process is still not well known. Here we tested the hypothesis that an AD-PRSs would be associated with changes in episodic memory and executive function across late midlife in men who were cognitively unimpaired at their baseline midlife assessment..
Method:
We examined 1168 men in the Vietnam Era Twin Study of Aging (VETSA) who were cognitively normal (CN) at their first of up to three assessments across 12 years (mean ages 56, 62, and 68). Latent growth models of episodic memory and executive function were based on 6–7 tests/subtests. AD-PRSs were based on Kunkle et al. (Nature Genetics, 51, 414–430, 2019), p < 5×10−8 threshold.
Results:
AD-PRSs were correlated with linear slopes of change for both cognitive abilities. Men with higher AD-PRSs had steeper declines in both memory (r = −.19, 95% CI [−.35, −.03]) and executive functioning (r = −.27, 95% CI [−.49, −.05]). Associations appeared driven by a combination of APOE and non-APOE genetic influences.
Conclusions:
Memory is most characteristically impaired in AD, but executive functions are one of the first cognitive abilities to decline in midlife in normal aging. This study is among the first to demonstrate that this early decline also relates to AD genetic influences, even in men CN at baseline.
This chapter outlines some of the ways in which cognitive behavior therapy (CBT) for anxiety disorders and depression has been modified and adapted to the ageing older population. Aspects that are outlined include modifications to the process of conceptualization, which has been expanded to include relevant gerontological factors. The areas that should be incorporated into the assessment of older adults with anxiety and depression prior to starting therapy are delineated, with a focus on the characteristic features that color the presentation in the case of older adults. The changes that must be made in carrying out CBT for older adults with depression and anxiety disorders so that it is effective are described. This includes accommodations for cognitive changes and health-related difficulties as well as taking into consideration factors that are specific to the older population.
A wide variety of neurological conditions may present first to a psychiatrist and it is important to be aware of these in differential diagnosis. A careful history, examination and a broad differential diagnosis can help set up an appropriate management plan – with room to change if things change in unexpected ways. In this article we explore common ground shared by psychiatry and neurology and show how incorporation of neurological knowledge can improve the practice of psychiatry. Using four fictional case vignettes of altered mental status we explore important neurological differential diagnoses which could present to the Psychiatrist.