We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this article, we give explicit bounds on the Wasserstein and Kolmogorov distances between random variables lying in the first chaos of the Poisson space and the standard normal distribution, using the results of Last et al. (Prob. Theory Relat. Fields165, 2016). Relying on the theory developed by Saulis and Statulevicius in Limit Theorems for Large Deviations (Kluwer, 1991) and on a fine control of the cumulants of the first chaoses, we also derive moderate deviation principles, Bernstein-type concentration inequalities, and normal approximation bounds with Cramér correction terms for the same variables. The aforementioned results are then applied to Poisson shot noise processes and, in particular, to the generalized compound Hawkes point processes (a class of stochastic models, introduced in this paper, which generalizes classical Hawkes processes). This extends the recent results of Hillairet et al. (ALEA19, 2022) and Khabou et al. (J. Theoret. Prob.37, 2024) regarding the normal approximation and those of Zhu (Statist. Prob. Lett.83, 2013) for moderate deviations.
We derive large-sample and other limiting distributions of components of the allele frequency spectrum vector, $\mathbf{M}_n$, joint with the number of alleles, $K_n$, from a sample of n genes. Models analysed include those constructed from gamma and $\alpha$-stable subordinators by Kingman (thus including the Ewens model), the two-parameter extension by Pitman and Yor, and a two-parameter version constructed by omitting large jumps from an $\alpha$-stable subordinator. In each case the limiting distribution of a finite number of components of $\mathbf{M}_n$ is derived, joint with $K_n$. New results include that in the Poisson–Dirichlet case, $\mathbf{M}_n$ and $K_n$ are asymptotically independent after centering and norming for $K_n$, and it is notable, especially for statistical applications, that in other cases the limiting distribution of a finite number of components of $\mathbf{M}_n$, after centering and an unusual $n^{\alpha/2}$ norming, conditional on that of $K_n$, is normal.
We study the weak convergence of the extremes of supercritical branching Lévy processes $\{\mathbb{X}_t, t \ge0\}$ whose spatial motions are Lévy processes with regularly varying tails. The result is drastically different from the case of branching Brownian motions. We prove that, when properly renormalized, $\mathbb{X}_t$ converges weakly. As a consequence, we obtain a limit theorem for the order statistics of $\mathbb{X}_t$.
We analyze the long-term stability of a stochastic model designed to illustrate the adaptation of a population to variation in its environment. A piecewise deterministic process modeling adaptation is coupled to a Feller logistic diffusion modeling population size. As the individual features in the population become further away from the optimal ones, the growth rate declines, making population extinction more likely. Assuming that the environment changes deterministically and steadily in a constant direction, we obtain the existence and uniqueness of the quasi-stationary distribution, the associated survival capacity, and the Q-process. Our approach also provides several exponential convergence results (in total variation for the measures). From this synthetic information, we can characterize the efficiency of internal adaptation (i.e. population turnover from mutant invasions). When the latter is lacking, there is still stability, but because of the high level of population extinction. Therefore, any characterization of internal adaptation should be based on specific features of this quasi-ergodic regime rather than the mere existence of the regime itself.
We study large-deviation probabilities of Telecom processes appearing as limits in a critical regime of the infinite-source Poisson model elaborated by I. Kaj and M. Taqqu. We examine three different regimes of large deviations (LD) depending on the deviation level. A Telecom process
$(Y_t)_{t \ge 0}$
scales as
$t^{1/\gamma}$
, where t denotes time and
$\gamma\in(1,2)$
is the key parameter of Y. We must distinguish moderate LD
${\mathbb P}(Y_t\ge y_t)$
with
$t^{1/\gamma} \ll y_t \ll t$
, intermediate LD with
$ y_t \approx t$
, and ultralarge LD with
$ y_t \gg t$
. The results we obtain essentially depend on another parameter of Y, namely the resource distribution. We solve completely the cases of moderate and intermediate LD (the latter being the most technical one), whereas the ultralarge deviation asymptotics is found for the case of regularly varying distribution tails. In all the cases considered, the large-deviation level is essentially reached by the minimal necessary number of ‘service processes’.
In contrast to previous belief, we provide examples of stationary ergodic random measures that are both hyperfluctuating and strongly rigid. Therefore we study hyperplane intersection processes (HIPs) that are formed by the vertices of Poisson hyperplane tessellations. These HIPs are known to be hyperfluctuating, that is, the variance of the number of points in a bounded observation window grows faster than the size of the window. Here we show that the HIPs exhibit a particularly strong rigidity property. For any bounded Borel set B, an exponentially small (bounded) stopping set suffices to reconstruct the position of all points in B and, in fact, all hyperplanes intersecting B. Therefore the random measures supported by the hyperplane intersections of arbitrary (but fixed) dimension, are also hyperfluctuating. Our examples aid the search for relations between correlations, density fluctuations, and rigidity properties.
We derive the large-sample distribution of the number of species in a version of Kingman’s Poisson–Dirichlet model constructed from an
$\alpha$
-stable subordinator but with an underlying negative binomial process instead of a Poisson process. Thus it depends on parameters
$\alpha\in (0,1)$
from the subordinator and
$r>0$
from the negative binomial process. The large-sample distribution of the number of species is derived as sample size
$n\to\infty$
. An important component in the derivation is the introduction of a two-parameter version of the Dickman distribution, generalising the existing one-parameter version. Our analysis adds to the range of Poisson–Dirichlet-related distributions available for modeling purposes.
Hawkes processes have been widely used in many areas, but their probability properties can be quite difficult. In this paper an elementary approach is presented to obtain moments of Hawkes processes and/or the intensity of a number of marked Hawkes processes, in which the detailed outline is given step by step; it works not only for all Markovian Hawkes processes but also for some non-Markovian Hawkes processes. The approach is simpler and more convenient than usual methods such as the Dynkin formula and martingale methods. The method is applied to one-dimensional Hawkes processes and other related processes such as Cox processes, dynamic contagion processes, inhomogeneous Poisson processes, and non-Markovian cases. Several results are obtained which may be useful in studying Hawkes processes and other counting processes. Our proposed method is an extension of the Dynkin formula, which is simple and easy to use.
We determine the order of magnitude of $\mathbb{E}|\sum _{n\leqslant x}f(n)|^{2q}$, where $f(n)$ is a Steinhaus or Rademacher random multiplicative function, and $0\leqslant q\leqslant 1$. In the Steinhaus case, this is equivalent to determining the order of $\lim _{T\rightarrow \infty }\frac{1}{T}\int _{0}^{T}|\sum _{n\leqslant x}n^{-it}|^{2q}\,dt$.
In particular, we find that $\mathbb{E}|\sum _{n\leqslant x}f(n)|\asymp \sqrt{x}/(\log \log x)^{1/4}$. This proves a conjecture of Helson that one should have better than squareroot cancellation in the first moment and disproves counter-conjectures of various other authors. We deduce some consequences for the distribution and large deviations of $\sum _{n\leqslant x}f(n)$.
The proofs develop a connection between $\mathbb{E}|\sum _{n\leqslant x}f(n)|^{2q}$ and the $q$th moment of a critical, approximately Gaussian, multiplicative chaos and then establish the required estimates for that. We include some general introductory discussion about critical multiplicative chaos to help readers unfamiliar with that area.
The continuum random cluster model is a Gibbs modification of the standard Boolean model with intensity z > 0 and law of radii Q. The formal unnormalised density is given by qNcc, where q is a fixed parameter and Ncc is the number of connected components in the random structure. We prove for a large class of parameters that percolation occurs for large enough z and does not occur for small enough z. We provide an application to the phase transition of the Widom–Rowlinson model with random radii. Our main tools are stochastic domination properties, a detailed study of the interaction of the model, and a Fortuin–Kasteleyn representation.
An urn contains black and red balls. Let Zn be the proportion of black balls at time n and 0≤L<U≤1 random barriers. At each time n, a ball bn is drawn. If bn is black and Zn-1<U, then bn is replaced together with a random number Bn of black balls. If bn is red and Zn-1>L, then bn is replaced together with a random number Rn of red balls. Otherwise, no additional balls are added, and bn alone is replaced. In this paper we assume that Rn=Bn. Then, under mild conditions, it is shown that Zn→a.s.Z for some random variable Z, and Dn≔√n(Zn-Z)→𝒩(0,σ2) conditionally almost surely (a.s.), where σ2 is a certain random variance. Almost sure conditional convergence means that ℙ(Dn∈⋅|𝒢n)→w 𝒩(0,σ2) a.s., where ℙ(Dn∈⋅|𝒢n) is a regular version of the conditional distribution of Dn given the past 𝒢n. Thus, in particular, one obtains Dn→𝒩(0,σ2) stably. It is also shown that L<Z<U a.s. and Z has nonatomic distribution.
We derive Laplace transform identities for the volume content of random stopping sets based on Poisson point processes. Our results are based on anticipating Girsanov identities for Poisson point processes under a cyclic vanishing condition for a finite difference gradient. This approach does not require classical assumptions based on set-indexed martingales and the (partial) ordering of index sets. The examples treated focus on stopping sets in finite volume, and include the random missed volume of Poisson convex hulls.
The infinite source Poisson arrival model with heavy-tailed workload distributions has attracted much attention, especially in the modeling of data packet traffic in communication networks. In particular, it is well known that under suitable assumptions on the source arrival rate, the centered and scaled cumulative workload input process for the underlying processing system can be approximated by fractional Brownian motion. In many applications one is interested in the stabilization of the work inflow to the system by modifying the net input rate, using an appropriate admission control policy. In this paper we study a natural family of admission control policies which keep the associated scaled cumulative workload input asymptotically close to a prespecified linear trajectory, uniformly over time. Under such admission control policies and with natural assumptions on arrival distributions, suitably scaled and centered cumulative workload input processes are shown to converge weakly in the path space to the solution of a d-dimensional stochastic differential equation driven by a Gaussian process. It is shown that the admission control policy achieves moment stabilization in that the second moment of the solution to the stochastic differential equation (averaged over the d-stations) is bounded uniformly for all times. In one special case of control policies, as time approaches ∞, we obtain a fractional version of a stationary Ornstein-Uhlenbeck process that is driven by fractional Brownian motion with Hurst parameter H > ½.
In this paper we consider the stationary Poisson Boolean model with spherical grains and propose a family of nonparametric estimators for the radius distribution. These estimators are based on observed distances and radii, weighted in an appropriate way. They are ratio unbiased and asymptotically consistent for a growing observation window. We show that the asymptotic variance exists and is given by a fairly explicit integral expression. Asymptotic normality is established under a suitable integrability assumption on the weight function. We also provide a short discussion of related estimators as well as a simulation study.
In this paper we propose a new modelling framework for electricity futures markets based on so-called ambit fields. The new model can capture many of the stylised facts observed in electricity futures and is highly analytically tractable. We discuss martingale conditions, option pricing, and change of measure within the new model class. Also, we study the corresponding model for the spot price, which is implied by the new futures model, and show that, under certain regularity conditions, the implied spot price can be represented in law as a volatility modulated Volterra process.
We construct a flow of continuous-time and discrete-state branching processes. Some scaling limit theorems for the flow are proved, which lead to the path-valued branching processes and nonlocal branching superprocesses, over the positive half line, studied in Li (2014).
The recently introduced two-parameter infinitely-many-neutral-alleles model extends the celebrated one-parameter version (which is related to Kingman's distribution) to diffusive two-parameter Poisson-Dirichlet frequencies. In this paper we investigate the dynamics driving the species heterogeneity underlying the two-parameter model. First we show that a suitable normalization of the number of species is driven by a critical continuous-state branching process with immigration. Secondly, we provide a finite-dimensional construction of the two-parameter model, obtained by means of a sequence of Feller diffusions of Wright-Fisher flavor which feature finitely many types and inhomogeneous mutation rates. Both results provide insight into the mathematical properties and biological interpretation of the two-parameter model, showing that it is structurally different from the one-parameter case in that the frequency dynamics are driven by state-dependent rather than constant quantities.
Our aim in this paper is to identify the limit behavior of the solutions of random degenerate equations of the form −div Aε(x′,∇Uε)+ρεω(x′)Uε=F with mixed boundary conditions on Ωε whenever ε→0, where Ωε is an N-dimensional thin domain with a small thickness h(ε), ρεω(x′)=ρω(x′/ε), where ρω is the realization of a random function ρ(ω) , and Aε(x′,ξ)=a(Tx′ /εω,ξ) , the map a(ω,ξ) being measurable in ω and satisfying degenerated structure conditions with weight ρ in ξ. As usual in dimension reduction problems, we focus on the rescaled equations and we prove that under the condition h(ε)/ε→0 , the sequence of solutions of them converges to a limit u0, where u0 is the solution of an (N−1) -dimensional limit problem with homogenized and auxiliary equations.
Let ξ be a random measure on a locally compact second countable topological group, and let X be a random element in a measurable space on which the group acts. In the compact case we give a natural definition of the concept that the origin is a typical location for X in the mass of ξ, and prove that when this holds, the same is true on sets placed uniformly at random around the origin. This new result motivates an extension of the concept of typicality to the locally compact case where it coincides with the concept of mass-stationarity. We describe recent developments in Palm theory where these ideas play a central role.
Let Xn be a sequence of integrable real random variables, adapted to a filtration (Gn). Define Cn = √{(1 / n)∑k=1nXk − E(Xn+1 | Gn)} and Dn = √n{E(Xn+1 | Gn) − Z}, where Z is the almost-sure limit of E(Xn+1 | Gn) (assumed to exist). Conditions for (Cn, Dn) → N(0, U) x N(0, V) stably are given, where U and V are certain random variables. In particular, under such conditions, we obtain √n{(1 / n)∑k=1nX_k - Z} = Cn + Dn → N(0, U + V) stably. This central limit theorem has natural applications to Bayesian statistics and urn problems. The latter are investigated, by paying special attention to multicolor randomly reinforced urns.