We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give a formulation of a deformation of Dirac operator along orbits of a group action on a possibly noncompact manifold to get an equivariant index and a K-homology cycle representing the index. We apply this framework to noncompact Hamiltonian torus manifolds to define geometric quantization from the viewpoint of index theory. We give two applications. The first one is a proof of a [Q,R]=0 type theorem, which can be regarded as a proof of the Vergne conjecture for abelian case. The other is a Danilov-type formula for toric case in the noncompact setting, which is a localization phenomenon of geometric quantization in the noncompact setting. The proofs are based on the localization of index to lattice points.
We study actions of Lie supergroups, in particular, the hitherto elusive notion of orbits through odd (or more general) points. Following categorical principles, we derive a conceptual framework for their treatment and therein prove general existence theorems for the isotropy (or stabiliser) supergroups and orbits through general points. In this setting, we show that the coadjoint orbits always admit a (relative) supersymplectic structure of Kirillov–Kostant–Souriau type. Applying a family version of Kirillov’s orbit method, we decompose the regular representation of an odd Abelian supergroup into an odd direct integral of characters and construct universal families of representations, parametrised by a supermanifold, for two different super variants of the Heisenberg group.
Let L → X be a positive line bundle on a compact complex manifold X. For compact submanifolds Y, S of X and a holomorphic submersion Y → S with compact fibre, we study curvature of a natural connection on certain line bundles on S.
Let $G$ be the abelian Lie group $\mathbb{R}^n\times\mathbb{R}^k/\mathbb{Z}^k$, acting on the complex space $X=\mathbb{R}^{n+k}\times\ri G$. Let $F$ be a strictly convex function on $\mathbb{R}^{n+k}$. Let $H$ be the Bergman space of holomorphic functions on $X$ which are square-integrable with respect to the weight $e^{-F}$. The $G$-action on $X$ leads to a unitary $G$-representation on the Hilbert space $H$. We study the irreducible representations which occur in $H$ by means of their direct integral. This problem is motivated by geometric quantization, which associates unitary representations with invariant Kähler forms. As an application, we construct a model in the sense that every irreducible $G$-representation occurs exactly once in $H$.
Ideas from conformal field theory are applied to symplectic four-manifolds through the use of modular functors to ‘linearise’ Lefschetz fibrations. In Chern–Simons theory, this leads to the study of parabolic vector bundles of conformal blocks. Motivated by the Hard Lefschetz theorem, the author shows that the bundles of SU(2) conformal blocks associated to Kähler surfaces are Brill–Noether special, although the associated flat connexions may be irreducible if the surface is simply connected and not spin.
The Hamiltonian potentials of the bending deformations of $n$-gons in ${{\mathbb{E}}^{3}}$ studied in $\left[ \text{KM} \right]$ and [Kly] give rise to a Hamiltonian action of the Malcev Lie algebra ${{P}_{n}}$ of the pure braid group ${{P}_{n}}$ on the moduli space ${{M}_{r}}$ of $n$-gon linkages with the side-lengths $r\,=\,\left( {{r}_{1}},\ldots ,{{r}_{n}} \right)$ in ${{\mathbb{E}}^{3}}$. If $e\,\in \,{{M}_{r}}$ is a singular point we may linearize the vector fields in ${{P}_{n}}$ at $e$. This linearization yields a flat connection $\nabla$ on the space $\mathbb{C}_{*}^{n}$ of $n$ distinct points on $\mathbb{C}$. We show that the monodromy of $\nabla$ is the dual of a quotient of a specialized reduced Gassner representation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.