In this paper, we give a new proof of the Onofri-type inequality
   $$\int_{S}{{{e}^{2u}}\,d{{s}^{2}}\,\le \,4\pi (\beta \,+\,1)\,\text{exp}}\left\{ \frac{1}{4\pi (\beta \,+\,1)}{{\int_{S}{\left| \nabla u \right|}}^{2}}\,d{{s}^{2}}\,+\,\frac{1}{2\pi (\beta \,+\,1)}\,\int_{S}{u\,d{{s}^{2}}} \right\}$$
 $$\int_{S}{{{e}^{2u}}\,d{{s}^{2}}\,\le \,4\pi (\beta \,+\,1)\,\text{exp}}\left\{ \frac{1}{4\pi (\beta \,+\,1)}{{\int_{S}{\left| \nabla u \right|}}^{2}}\,d{{s}^{2}}\,+\,\frac{1}{2\pi (\beta \,+\,1)}\,\int_{S}{u\,d{{s}^{2}}} \right\}$$  
on the sphere   $S$  with Gaussian curvature 1 and with conical singularities divisor
 $S$  with Gaussian curvature 1 and with conical singularities divisor   $\mathcal{A}\,=\,\beta \,\cdot \,{{p}_{1}}\,+\,\beta \,\cdot \,{{p}_{2}}$  for
 $\mathcal{A}\,=\,\beta \,\cdot \,{{p}_{1}}\,+\,\beta \,\cdot \,{{p}_{2}}$  for   $\beta \in \,(-1,\,0)$ ; here
 $\beta \in \,(-1,\,0)$ ; here   ${{p}_{1}}$  and
 ${{p}_{1}}$  and   ${{p}_{2}}$  are antipodal.
 ${{p}_{2}}$  are antipodal.