We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We establish power-series expansions for the asymptotic expectations of the vertex number and missed area of random disc-polygons in planar convex bodies with $C^{k+1}_+$-smooth boundaries. These results extend asymptotic formulas proved in Fodor et al. (2014).
Tao and Vu showed that every centrally symmetric convex progression $C\subset \mathbb{Z}^d$ is contained in a generalized arithmetic progression of size $d^{O(d^2)} \# C$. Berg and Henk improved the size bound to $d^{O(d\log d)} \# C$. We obtain the bound $d^{O(d)} \# C$, which is sharp up to the implied constant and is of the same form as the bound in the continuous setting given by John’s theorem.
We study the metric projection onto the closed convex cone in a real Hilbert space
$\mathscr {H}$
generated by a sequence
$\mathcal {V} = \{v_n\}_{n=0}^\infty $
. The first main result of this article provides a sufficient condition under which the closed convex cone generated by
$\mathcal {V}$
coincides with the following set:
$$ \begin{align*} \mathcal{C}[[\mathcal{V}]]: = \bigg\{\sum_{n=0}^\infty a_n v_n\Big|a_n\geq 0,\text{ the series }\sum_{n=0}^\infty a_n v_n\text{ converges in } \mathscr{H}\bigg\}. \end{align*} $$
Then, by adapting classical results on general convex cones, we give a useful description of the metric projection onto
$\mathcal {C}[[\mathcal {V}]]$
. As an application, we obtain the best approximations of many concrete functions in
$L^2([-1,1])$
by polynomials with nonnegative coefficients.
For a given convex body $K$ in ${{\mathbb{R}}^{d}}$, a random polytope ${{K}^{(n)}}$ is defined (essentially) as the intersection of $n$ independent closed halfspaces containing $K$ and having an isotropic and (in a specified sense) uniform distribution. We prove upper and lower bounds of optimal orders for the difference of the mean widths of ${{K}^{(n)}}$ and $K$ as $n$ tends to infinity. For a simplicial polytope $P$, a precise asymptotic formula for the difference of the mean widths of ${{P}^{(n)}}$ and $P$ is obtained.
Given $r\,>\,1$, we consider convex bodies in ${{\mathbb{E}}^{n}}$ which contain a fixed unit ball, and whose extreme points are of distance at least $r$ from the centre of the unit ball, and we investigate how well these convex bodies approximate the unit ball in terms of volume, surface area and mean width. As $r$ tends to one, we prove asymptotic formulae for the error of the approximation, and provide good estimates on the involved constants depending on the dimension.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.