We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that the set of elementary tensors is weakly closed in the projective tensor product of two Banach spaces. As a result, we answer a question of Rodríguez and Rueda Zoca [‘Weak precompactness in projective tensor products’, Indag. Math. (N.S.)35(1) (2024), 60–75], proving that if $(x_n) \subset X$ and $(y_n) \subset Y$ are two weakly null sequences such that $(x_n \otimes y_n)$ converges weakly in $X \widehat {\otimes }_\pi Y$, then $(x_n \otimes y_n)$ is also weakly null.
Motivated by Altshuler’s famous characterization of the unit vector basis of $c_0$ or $\ell _p$ among symmetric bases (Altshuler [1976, Israel Journal of Mathematics, 24, 39–44]), we obtain similar characterizations among democratic bases and among bidemocratic bases. We also prove a separate characterization of the unit vector basis of $\ell _1$.
In this article, we provide necessary and sufficient conditions for the existence of non-norm-attaining operators in
$\mathcal {L}(E, F)$
. By using a theorem due to Pfitzner on James boundaries, we show that if there exists a relatively compact set K of
$\mathcal {L}(E, F)$
(in the weak operator topology) such that
$0$
is an element of its closure (in the weak operator topology) but it is not in its norm-closed convex hull, then we can guarantee the existence of an operator that does not attain its norm. This allows us to provide the following generalisation of results due to Holub and Mujica. If E is a reflexive space, F is an arbitrary Banach space and the pair
$(E, F)$
has the (pointwise-)bounded compact approximation property, then the following are equivalent:
(i)
$\mathcal {K}(E, F) = \mathcal {L}(E, F)$
;
(ii) Every operator from E into F attains its norm;
where
$\tau _c$
denotes the topology of compact convergence. We conclude the article by presenting a characterisation of the Schur property in terms of norm-attaining operators.
This article deals with the problem of when, given a collection
$\mathcal {C}$ of weakly compact operators between separable Banach spaces, there exists a separable reflexive Banach space Z with a Schauder basis so that every element in
$\mathcal {C}$ factors through Z (or through a subspace of Z). In particular, we show that there exists a reflexive space Z with a Schauder basis so that for each separable Banach space X, each weakly compact operator from X to
$L_1[0,1]$ factors through Z.
We also prove the following descriptive set theoretical result: Let
$\mathcal {L}$ be the standard Borel space of bounded operators between separable Banach spaces. We show that if
$\mathcal {B}$ is a Borel subset of weakly compact operators between Banach spaces with separable duals, then for
$A \in \mathcal {B}$, the assignment
$A \to A^*$ can be realised by a Borel map
$\mathcal {B}\to \mathcal {L}$.
For a normed infinite-dimensional space, we prove that the family of all locally convex topologies which are compatible with the original norm topology has cardinality greater or equal to $\mathfrak{c}$.
In this note, we first give a characterization of super weakly compact convex sets of a Banach space $X$: a closed bounded convex set $K\,\subset \,X$ is super weakly compact if and only if there exists a ${{w}^{*}}$ lower semicontinuous seminorm $P$ with $P\,\ge \,{{\sigma }_{K}}\,\equiv \,{{\sup }_{x\in K}}\left\langle \,\cdot \,,\,x \right\rangle $ such that ${{P}^{2}}$ is uniformly Fréchet differentiable on each bounded set of ${{X}^{*}}$. Then we present a representation theoremfor the dual of the semigroup swcc$\left( X \right)$ consisting of all the nonempty super weakly compact convex sets of the space $X$.
Let $X$ be a separable non-reflexive Banach space. We show that there is no Borel class which contains the set of norm-attaining functionals for every strictly convex renorming of $X$.
New necessary and sufficient conditions are established for Banach spaces to have the approximation property; these conditions are easier to check than the known ones. A shorter proof of a result of Grothendieck is presented, and some properties of a weak version of the approximation property are addressed.
For a Banach space $X$ we consider three ways in which a subspace of $X^*$ can represent locally the whole dual space $X^*$. We obtain characterizations in terms of ultrapowers and we study the relationship between the subspaces of $X^*$ and the subspaces of the dual of an ultrapower of $X$.
An element u of a norm-unital Banach algebra A is said to be unitary if u is invertible in A and satisfies $\Vert u\Vert =\Vert u^{-1}\Vert =1$. The norm-unital Banach algebra A is called unitary if the convex hull of the set of its unitary elements is norm-dense in the closed unit ball of A. If X is a complex Hilbert space, then the algebra $\BL(X)$ of all bounded linear operators on X is unitary by the Russo–Dye theorem. The question of whether this property characterizes complex Hilbert spaces among complex Banach spaces seems to be open. Some partial affirmative answers to this question are proved here. In particular, a complex Banach space X is a Hilbert space if (and only if) $\BL(X)$ is unitary and, for Y equal to $X,$ $X^*$ or $X^{**},$ there exists a biholomorphic automorphism of the open unit ball of Y that cannot be extended to a surjective linear isometry on Y.
We introduce a framework for a nonlinear potential theory without a kernel on a reflexive, strictly convex and smooth Banach space of functions. Nonlinear potentials are defined as images of nonnegative continuous linear functionals on that space under the duality mapping. We study potentials and reduced functions by using a variant of the Gauss-Frostman quadratic functional. The framework allows a development of other main concepts of nonlinear potential theory such as capacities, equilibrium potentials and measures of finite energy.
We show a result slightly more general than the following. Let $K$ be a compact Hausdorff space, $F$ a closed subset of $K$, and $d$ a lower semi-continuous metric on $K$. Then each continuous function $f$ on $F$ which is Lipschitz in $d$ admits a continuous extension on $K$ which is Lipschitz in $d$. The extension has the same supremum norm and the same Lipschitz constant.
As a corollary we get that a Banach space $X$ is reflexive if and only if each bounded, weakly continuous and norm Lipschitz function defined on a weakly closed subset of $X$ admits a weakly continuous, norm Lipschitz extension defined on the entire space $X$.
As a consequence of results due to Bourgain and Stegall, on a separable Banach space whose unit ball is not dentable, the set of norm attaining functionals has empty interior (in the norm topology). First we show that any Banach space can be renormed to fail this property. Then, our main positive result can be stated as follows: if a separable Banach space $X$ is very smooth or its bidual satisfies the ${{\mathcal{w}}^{*}}$-Mazur intersection property, then either $X$ is reflexive or the set of norm attaining functionals has empty interior, hence the same result holds if $X$ has the Mazur intersection property and so, if the norm of $X$ is Fréchet differentiable. However, we prove that smoothness is not a sufficient condition for the same conclusion.
Recall a closed convex set C is said to have the weak drop property if for every weakly sequentially closed set A disjoint from C there exists x ∈ A such that co({x} ∩ C) ∪ A = {x}. Giles and Kutzarova proved that every bounded closed convex set with the weak drop property is weakly compact. In this article, we show that if C is an unbounded closed convex set of X with the weak drop property, then C has nonempty interior and X is a reflexive space.
Every Banach space with a non-shrinking (unconditional) basis (Xi) can be renormed so that the biorthogonal sequence has a much smaller (unconditional) basis constant than (xi). On the other hand, if the unconditional constant of is C < 2 then the unconditional constant of (xi) is at most C/(2—C). This estimate is sharp.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.