Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T21:30:04.699Z Has data issue: false hasContentIssue false

Nonlinear potentials in function spaces

Published online by Cambridge University Press:  22 January 2016

Murali Rao
Affiliation:
Department of Mathematics, University of Florida, 358 Little Hall, Gainesville, Fl 32611-8105, U.S.A., rao@math.ufl.edu
Zoran Vondraćek
Affiliation:
Department of Mathematics, University of Zagreb, BijeniĆka c. 30, 10000 Zagreb, Croatia, vondra@math.hr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We introduce a framework for a nonlinear potential theory without a kernel on a reflexive, strictly convex and smooth Banach space of functions. Nonlinear potentials are defined as images of nonnegative continuous linear functionals on that space under the duality mapping. We study potentials and reduced functions by using a variant of the Gauss-Frostman quadratic functional. The framework allows a development of other main concepts of nonlinear potential theory such as capacities, equilibrium potentials and measures of finite energy.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2002

References

[1] Adams, D. R. and Hedberg, L. I., Function Spaces and Potential Theory, Springer, 1996.Google Scholar
[2] Aïssaoui, N. and Benkirane, A., Capacités dans les espaces d’Orlicz, Ann. Sci. Math. Quèbec, 18 (1994), 123.Google Scholar
[3] Aïssaoui, N. and Benkirane, A., Potentiel non linéaire dans les espaces d’Orlicz, Ann. Sci. Math. Quèbec, 18 (1994), 105118.Google Scholar
[4] Ancona, A., Une propriété des espaces de Sobolev, C. R. Acad. Sci. Paris, Sèr. I, 292 (1981), 477480.Google Scholar
[5] Aronszajn, N. and Smith, K. T., Functional spaces and functional completion, Ann. Inst. Fourier (Grenoble), 13 (1956), no. 2, 125185.Google Scholar
[6] Asplund, E., Positivity of duality mappings, Bull. Amer. Math. Soc., 73 (1967), 200203.Google Scholar
[7] Attouch, H. and Picard, C., Problemes variationnels et theorie du potentiel non lineaire, Annales Fac. Sciences Toulouse, 1 (1979), no. 2, 89136.CrossRefGoogle Scholar
[8] Cioranescu, I., Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer, 1990.Google Scholar
[9] Coffman, C. V. and Grover, C. L., Obtuse cones in Hilbert spaces and applications to partial differential equations, Journal of Functional Analysis, 35 (1980), 369396.Google Scholar
[10] Diestel, J., Geometry of Banach Spaces Selected Topics, Lecture Notes in Mathematics 485, Springer, 1975.Google Scholar
[11] Feyel, D. and Pradelle, A. de La, Topologies fines et compactifications assciées a certains espaces de Dirichlet, Ann. Inst. Fourier (Grenoble), 27 (1977), no. 4, 121146.Google Scholar
[12] Fowler, P. A., Potential Theory in Banach spaces of functions, A Condenser Theorem, J. Math. Anal. Appl., 33 (1971), no. 2, 310322.Google Scholar
[13] Fuglede, B., Applications du thèoréme du minimax à l’ètude de diverses capacités, C. R. Acad. Sci. Paris Sèr. A-B, 266 (1968), 921923.Google Scholar
[14] Fukushima, M., Two topics related to Dirichlet forms: quasi everywhere convergence and additive functionals, Dirichlet Forms, Lecture Notes in Mathematics 1563 (G. Dell’Antonio and U. Mosco, eds.), Springer (1993).Google Scholar
[15] Fukushima, M. and Kaneko, H., On (r, p)-capacities for general Markovian semigroups, Infinite dimensional analysis and stochastic processes (S. Albeverio, ed.), Pitman (1985).Google Scholar
[16] Havin, V. P. and Maz’ya, V. G., Non-linear potential theory, Russian Math. Surveys, 27 (1972), no. 6, 71148.Google Scholar
[17] Heinonen, J., Kilpeläinen, T. and Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University press, Oxford, 1993.Google Scholar
[18] Kazumi, T. and Shikegawa, I., Measures of finite (r, p)-energy and potentials on a separable metric space, Sèminaire de Probabilitès, XXVI (J. Azèma and M. Yor, eds.), Lecture Notes in Mathematics 1526, Springer (1992), pp. 415444.Google Scholar
[19] Kenmochi, N. and Mizuta, Y., The gradient of a convex function on a regular functional space and its potential theoretic properties, Hiroshima Math. J., 4 (1974), 743763.Google Scholar
[20] Krasnosel’skii, M. A. and Rutickii, Ya. B., Convex Functions and Orlicz Spaces, P. Noordhoff, 1961.Google Scholar
[21] Meyers, N. G., A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand., 26 (1970), 255292.Google Scholar
[22] Rao, M. and Sokolowski, J., Non-linear Balayage and Applications, Illinois J. Math., 44 (2000), 310328.Google Scholar